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ABSTRACT

Breast cancer is the second leading cause of cancer deaths in women today.

Currently, mammography is the primary method of early detection. However, re-

search has shown that many cases (10-30%) missed by mammography can be detected

using breast MRI (BMRI). BMRI is more difficult to interpret than mammography

because it generates significantly more data. Also, there are fewer people qualified to

use it for diagnosis because it is not the standard breast imaging modality.

Our goal is to develop and test a CAD system to aid and improve the perfor-

mance of radiologists with different levels of experience in reading breast MR images.

Part of the CAD system is an image loader and viewer capable of displaying multi-

ple sequences simultaneously, with standard region of interest and high level analysis

tools. We propose a semi-automatic segmentation method that identifies significant

lesions. Then, 42 shape, texture, and enhancement kinetics based features were com-

puted. The top 13 best features were selected and used as inputs to three artifi-

cial classifiers: a backpropagation neural network (BNN), a support vector machine

(SVM), and a Bayesian classifier (BC). Each one was trained using pathology results

as the gold standard. Five human readers (a BMRI expert, two mammographers, and

two body imaging fellows) manually classified 75 BMRI datasets (80 lesions), both

with and without CAD system assistance. The performance of the computer classi-

fiers and human readers were compared using ROC curves, and the human readers’

performance was also evaluated using MRMC analysis.

The ROC curve analysis showed that the BNN system significantly outper-
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formed the other two classifiers with Az = 0.970, and p < 0.05, and a sensitivity of

91.3% with zero false positives. Also, all human readers significantly improved when

aided by the CAD system (p < 0.05). The MRMC analysis showed that the hu-

man reader performance with and without CAD system assistance can be generalized

over the population of cases and still maintain a statistically significant improvement

(F (1, 74) = 6.805, p = 0.0110 < 0.05). These results show significant advantages to

using CAD systems in classifying BMRI lesions.
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CHAPTER 1
INTRODUCTION

Breast cancer is the most common cancer among women (excluding non-

melanoma skin cancers) and the second leading cause of cancer deaths in women

after lung cancer [46]. According to the American cancer society [2], in 2004, approx-

imately 216, 000 women and approximately 1, 500 men will have breast cancer in the

United States of America. Approximately 18% will die from this illness. Breast cancer

incidence in women has increased from one in 20 in 1960 to one in eight today. [71]

The key to surviving breast cancer is early detection and treatment.

According to the American Cancer Society, when breast cancer is confined to the

breast, the five-year survival rate approaches 100%. Not only does early detection

improve survival, it also increases the likelihood that the cancer will be amenable

to breast conservation therapy, which benefits the patient by reducing the physical

and psychological morbidity of therapy. Accurate staging of breast cancer ensures

that patients receive the correct treatment. Highly specific breast cancer detection

methods minimize the risk of unnecessary biopsy or surgery. Breast MRI (BMRI)

has emerged as a promising technique for detecting, diagnosing, and staging breast

cancer. Our goal is to help women with breast cancer by improving the performance

and confidence of radiologists who interpret BMRI.

1.1 Hypothesis and Specific Aims

The overall hypothesis that motivates this work is that computer-aided di-

agnosis (CAD) can improve the accuracy of expert and non-expert readers
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for classifying suspicious lesions on BMRI.

Our plan is to develop and test an automated classification system which

improves the performance of radiologists reading breast MR images. We propose

these four specific aims:

1. Develop a method to segment BMRI datasets into regions of interest (lesions

and ducts) and background.

2. Select and compute the shape, texture, and contrast enhancement pattern of

suspicious lesions in BMRI.

3. Devise classifiers to distinguish benign from malignant lesions, using the features

identified in aim 2.

4. Assess the performance of the classifiers for expert and non-expert readers by

using a set of pathologically-proven lesions from BMRI data.

This thesis contains seven chapters. The first chapter is a general introduction

of the work, hypothesis, and specific aims. In the second chapter, the Background

and Significance sections discuss the importance of this research and related work.

The third chapter explains the fundamentals of magnetic resonance imaging (MRI),

breast MRI (BMRI), neural networks, and support vector machines (SVM). In the

fourth chapter, we describe our methods for reaching our specific aims; chapter four

includes a section for each of the specific aims. Chapter five presents the results of

the work, and then we discuss and summarize these results in the sixth chapter. The

seventh chapter suggests possible future areas of work related to this research.
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CHAPTER 2
SIGNIFICANCE

The first section of this chapter describes the background, the second section

discusses the significance of this reseach, and the third section is a literature review.

2.1 Background

Most breast cancers are diagnosed by mammography, but early cancers can

be difficult to detect within the complex architecture of the breast. Research has

shown that 10% to 30% of breast MRI (BMRI) visible cancers are overlooked in

mammography [14, 38, 70]. Human factors related to perception and interpretation

also contribute to false negative mammograms. These factors include a failure to

notice a visible cancer, perhaps due to distracting features in the image, and a failure

to correctly classify a lesion as a cancer [21]. Classification errors are detrimental to

the patient and costly to the health care system.

Liberman [62] showed in a recent study published in The New England Journal

of Medicine that the value of mammograms for women at average risk of breast cancer

has been hotly debated, though most doctors agree that the test saves lives in women

older than 50. Also, this study showed that the benefits of better detection from

MRI outweigh its drawbacks for those with a strong family history of breast cancer

or faulty genes.

The most useful MRI technique for breast imaging uses a contrast material

called gadolinium chelate, which is injected into a vein in the arm before or during

the exam to improve the quality of the images. The gadolinium travels through
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the vascular system and helps produce images with good contrast that “highlight”

any abnormalities [47]. During the examination, the breast is imaged once before and

several times after the injection of the contrast agent. The first series is called the pre-

contrast sequence, and the other series are called the post-contrast sequences [14]. The

BMRI diagnosis is based on the experimental observation that abnormal tissues (both

benign and malignant) absorb more contrast agent than normal tissues because of

their increased vascular permeability and angiogenesis [15]. This increased absorbsion

yields an increased MR response, which appears as a region of enhanced grayscale

intensity on the MR images. This increased enhancement of the abnormal tissues

conveys to the observer the amount of and the speed of the diffusion process of the

contrast agent, where both the rate of enhancement after the injection and the shape

of the enhancement curve are considered important criterion. MRI is inherently

an imaging modality with inconsistent signal intensity, and as a result, MRI signal

intensity values are qualitative instead of quantitative. Thus, even if you scan the

same patient twice on the same day, you may get different MR image intensity values.

2.2 Significance

Early experience with BMRI indicates a high sensitivity and moderate speci-

ficity for detection of breast cancer [90]. Moreover, 17-34% of cancers that are visible

in BMRI are not detected in mammography [99]. The superior detection sensitivity

of BMRI has been ascribed to its tomographic properties, greater soft tissue contrast,

and larger field-of-view. Tumors located high on the chest wall or in the axillary

tail of the breast are better discerned by BMRI [66, 90]. BMRI also depicts the size
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and extent of breast cancers more accurately than either mammography or physical

examination [99]. These advantages suggest that BMRI might serve as an adjunct to

mammography for detecting and characterizing breast masses [33]. Nonetheless, en-

thusiasm for BMRI has been tempered by its high cost, limited availability, the large

size of BMRI data sets (≈400 images per patient), and the greater time required to

read BMRI. Thus, it is unlikely that BMRI will completely replace mammography,

especially for breast cancer screening in the general population. However, for certain

high-risk patients (e.g., BRCA1/2 positive, strong family or personal history of breast

cancer, etc.), BMRI may become the preferred screening modality.

Kriege et al. [52] reported in a study of clinical breast examination, mam-

mography, and MRI in 1909 women who had a genetic or familial predisposition to

breast cancer lifetime risk ≥ 15 % in the Netherlands. Of these women, 19% had

BRCA mutations. Kriege et al. provided data on almost twice as many patients and

twice as many mutation carriers as were included in all previously published evalu-

ations of MRI in high-risk patients combined. Those who interpreted the MRIs and

mammograms where unaware of the results of the other technique. The investigators

analyzed their data in subgroups according to quantified levels of risk. Their study

confirms the high sensitivity of MRI in identifying invasive breast cancer in high-risk

patients.

Kriege et al. found that the breast-cancer detection rate was 9.5 cases per 1000

woman-years of follow-up overall: 7.8 cases per 1000 women with a 15 to 29% lifetime

risk, 5.4 per 1000 for those with a 30 to 49% lifetime risk, and 26.5 per 1000 for carriers
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of BRCA1 or BRCA2 mutations. Among 45 cancers, 49% were identified by MRI but

not mammography, 22% were identified by both MRI and mammography, 18% were

identified by mammography but not MRI. Of these 45 tumors, 4 were cancers, and 1

was identified by clinical examination only. Certain features appeared in more than

half of the cancers in mutation carriers: they were diagnosed in women between the

ages of 30 and 39 years; they were invasive cancers; and the tumors were of high

nuclear grade, estrogen receptor-negative, and node-negative. Only 17% of cancers

in mutation carriers were interval cancers. In their analyses, MRI, as compared with

mammography, had higher sensitivity (71% vs. 40%) but lower specificity (90% vs.

95%).

Kriege et al. report that short-term follow-up MRI was recommended in 7% of

examinations, as compared with 10 to 25% in prior reports [53]. MRI had limited sen-

sitivity (17%) in detecting ductal carcinoma in situ; in prior studies, the sensitivity of

MRI for this type of lesion ranged from 0% [98] to 100% [53,77]. Kriege et al. also re-

ported that MRI had lower specificity than mammography, but Kuhl et al. [53] found

that MRI had higher sensitivity and specificity than mammography. But we believe

that refinement and standardization of MRI technique and interpretation

may improve specificity while retaining high sensitivity. Not addressed by

Kriege et al. is the potential role of ultrasonography in screening high-risk women.

In studies that supplemented mammography with both MRI and ultrasonography,

MRI had higher sensitivity and specificity than ultrasonography and was superior in

detecting ductal carcinoma in situ. [53,77,98]
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Mammographers seem the best qualified, and certainly the most likely to read

BMRI, but they are accustomed to reading 4-6 images per patient as compared with

the 200-400 images per patient that BMRI generates. Also, some mammographers

may be uncomfortable interpreting MR images. A user-friendly computerized sys-

tem for BMRI image presentation and lesion classification may help mammographers

overcome their objections and anxieties concerning BMRI. Such a system would re-

duce the time required to read BMRI, making the technique a more practical clinical

tool.

The diagnostic accuracy of mammography is increased when two radiologists

examine the same mammogram, or when the same radiologist re-reads a mammo-

gram [96]. These strategies decrease the number of missed cancers. The rationale

for CAD systems is to replace the second pair of human eyes with a set of “elec-

tronic eyes.” The development of dependable, low-cost CAD systems for breast lesion

detection and classification is of great practical interest [32,95].

2.3 Literature Review

Researchers have developed mammography CAD systems for detecting breast

tumors [22, 63, 64, 69, 76, 94, 102] and microcalcifications [34]. Many classification

methods have already been developed and applied to characterize mammographic

breast masses as benign or malignant. These methods include wavelets [18, 81, 97],

fractals [56, 58], statistical methods [17, 48], vision-based methods [79] and, recently,

artificial neural networks (ANN) [3,5,7,20,22,25,34,55,59,63,64,69,76,87,94,100–103].

ANN-based methods are especially popular [101] because they can be implemented
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using parallel processing to efficiently handle large amounts of information, they can

analyze and classify patterns even when the information is noisy, complex or incom-

plete, and they can adapt their behavior to a variety of training data. ANN have

been used to detect and classify microcalcifications [25, 100, 103] and breast masses

on mammography [3,5, 7, 20,22,25,34,55,59,60,63,64,69,76,87,94,100–103].

Several research groups have reported encouraging results in using neural net-

works to classify breast masses on mammography [7, 13,19,25,30,45,54,55,87].

Arbach et al. [5] compared mammographic mass classification performance

between a backpropagation neural network (BNN), expert radiologists, and residents.

The goal was to reduce false negatives during routine reading of mammograms. The

database consisted of 160 cases from 3 different institutions. Each case contained at

least one mass and had an accompanying biopsy result. Ten texture and shape based

features (area, perimeter, compactness, radial length, spiculation, mean/standard

deviation of radial length, minimum/maximum axis, and boundary roughness) were

used as inputs to a three-layer neural network. 140 cases were used for training the

BNN and the remaining 20 cases were used for testing. The testing set was diagnosed

by three expert radiologists, three residents, and the BNN. Az = 0.923 for the BNN,

0.846 for the expert radiologists, and 0.648 for the residents.

Shih-Chung et al. [87] designed a multiple circular path convolution neural

network system (MCPCNN) for detection of mammographic masses on 91 patients.

They first divided each suspected tumor area into sectors and computed the defined

mass features for each sector independently. These sector features were used on the
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input layer of the neural network. The masses were divided into two categories. The

first one is small, well defined, and smoothed edges masses. And the second one is

large, poorly defined, and spiculated masses. The overall performance was 0.78 for

the area under the ROC curve (Az). This group used an average filter in the pre-

processing step, which helped in loosing important information about the edges of the

masses. Also, they used 125 neurons in the hidden layer of the neural network. The

consequence of too many hidden layer neurons results in network memorization so

that they do not properly generalize well to the validation and test set environment

data.

Land et al. [55] developed a neural network for improving the benign/malignant

diagnosis of breast cancer using mammogram findings (MLFN). They developed a

machine learning paradigm (AB) focuses on finding weak learning algorithm(s) that

initially need to provide slightly better than random performance (i.e., approximately

55%) when processing a mammogram training set. Then, by successive develop-

ment of additional architectures (using the mammogram training set), the adaptive

boosting process improved the performance of the basic evolutionary programming

derived neural network architectures. The results of these several EP-derived hybrid

architectures were then intelligently combined and tested using a similar validation

mammogram data set. Optimization focused on improving specificity and positive

predictive value at very high sensitivities, where an analysis of the performance of

the hybrid would be most meaningful. Using the Duke mammogram database of 500

biopsy proven samples, on average this hybrid was able to achieve an Az=0.85. This
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group used one neuron in the hidden layer of their neural network. This would reduce

the ability of the system to training. Shape features only were used as an input to the

Feed-forward neural network. Using Feed-forward training algorithms usually done

by training the system with one of the inputs at the time, which forces the network to

calculate each input weights independently from the others. This would be in most

cases not the best sets of weights to be used.

Bruce et al. [13] used a neural network with Wavelet transforms for an auto-

mated mammographic mass classification (NNWT). The discrete Wavelet transform

was applied to the radial distance measure of the mass shape, and scalar energy fea-

ture was computed to form the two layers network inputs. The system was trained

on 23 mammograms and tested on a simulated mammogram. The performance of

this neural network was Az=0.87.

Huo et al. [45] developed a computer-aided diagnosis method for differentiating

malignant from benign masses from mammograms (CADM). The four computer ex-

tracted features they used were spiculation, margin sharpness, and two density-related

measures. These features were merged using either an artificial neural network or a

hybrid method consisting of a rule-based system followed by an artificial neural net-

work. The method was trained with 95 mammograms containing masses from 65

patients. Various features related to the margin and density of each mass were ex-

tracted automatically from the image data and merged into an estimated likelihood of

malignancy. The round-robin performance of the computer in distinguishing between

benign and malignant masses was evaluated by ROC analysis. This group computer
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classification scheme yielded an Az value of 0.94, similar to that of an experienced

mammographer (Az =0.91) and statistically significantly higher than the average per-

formance of five radiologists with less mammographic experience (Az =0.8 1). With

the database they used, the computer scheme achieved, at 100% sensitivity, a positive

predictive value of 83%, which was 12% higher than that of the experienced mammo-

grapher and 21% higher than that of the average performance of the less experienced

mammographers at a p-value of less than 0.001.

Enderwick et al. [30] performed a classification on a biopsy-proven malignant

masses using a mix of shape and texture features. Shape features included size,

translation, and rotation invariant moments. Texture features included fractal-based

features and spatial gray level dependence (SGLD) matrix features. The entropy

was also computed for each mass. The type of classifier used was a neural network

based on the ALOPEX training algorithm, which depends on stochastic optimization

method. The dataset consisted of 90 masses for the training stage and 14 masses for

testing stage. Because of lack of storage area, the masses were reduced by half to

256*256 pixels. The Az for this experiment was 0.79.

Kocur et al. [54] designed a computer-aided diagnosis system to be used as

a second opinion to radiologists, in order to aid in decreasing the number of false

readings of mammograms (CADMP). Neural networks were used at both the classi-

fication and feature selection stages in the development of a computer-aided breast

cancer diagnostic system. The multilayer perceptron was used to classify and con-

trast three features (angular second moment, eigenmasses, and wavelets) developed
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to distinguish benign from malignant lesion in a database of 94 difficult-to-diagnose

digitized microcalcification cases. System performance of 74% correct classifications is

achieved. Feature selection techniques were presented which further improved perfor-

mance. Neural and decision boundary-based methods were implemented, compared,

and validated to isolate and remove useless features. The contribution from this

analysis was an increase to 88% correct classification in system performance.

Cheng et al. [19] used a multilayer back-propagation neural network (MBNN)

to classify the mammograms into three risk groups. They employed a feature extrac-

tion algorithm based on the fuzzy co-occurrence matrix concept, and used it to deal

with early and accurate breast cancer diagnosis by analyzing microscope-slide biopsy

images. The data base for this study consisted of 90 mammograms; 60 of them were

used for training the three layer neural network with four neurons in the hidden layer.

This system gave Az=0.762.

Dhawan et al. [25] classified mammographic microcalcifications using artificial

neural network and image structure features (CMMNN). They presented a second-

order gray-level histogram based feature extraction approach to extract microcalcifi-

cation features. These features, called image structure features, were computed from

the second-order gray-level histogram statistics, and did not require segmentation of

the original image into binary regions. Several image structure features were com-

puted for 100 cases of “difficult to diagnose” microcalcification cases with known

biopsy results. These features were analyzed in a correlation study which provided a

set of five best image structure features. A feedforward neural network was used to
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classify mammographic microcalcifications using the image structure features. The

network was trained on 10 cases of mammographic microcalcifications and tested on

additional 85 ‘difficult-to-diagnose’ microcalcifications cases using the selected image

structure features. The trained network yielded Az=0.74. This group used only 10%

of the datasets for training, which made the system incapable of learning from enough

examples. Also, they used Feed-forward training algorithm which does not give the

best results cpmpared with feed-back algorithm.

Table 2.1 on page 15 shows a comparison among the different systems men-

tioned above.

2.3.1 Penn 2001

In 2001, Alan Penn, et al. [75] published a paper about the first and second

revisions of their BMRI CAD system. They used 95 contrast-enhanced MR images,

and had an expert locate the suspicious lesion for each case. The expert chose a

representative slice for each case, and manually overlayed an arrow indicating where

the lesion was located.

They had 5 human readers score each of the masses on five different features:

border shape, rim enhancement, septation, intensity and density. Each reader as-

sessed the likelihood-of-cancer using a 1-5 scale with 1 being definitely benign, and

5 being definitely malignant. The readers also supplied a follow-up action of either

biopsy, repeat MR in 3-6 months, or return to routine mammography.

Readers selected a region of interest for each lesion, and this region was used to

compute a fractal-dimension feature. This feature was heuristically thresholded into 2
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categories, strong-indication-of-malignancy, and not strong-indication-of-malignancy.

After the readers had scored each of the cases, they used logical regression to

compute a correlation between each feature and the likelihood of malignancy.

After 30 days, each reader was presented with the cases again. This time,

they were also presented with the fractal dimensional feature, and the likelihood-of-

malignancy measure. It should be noted that the users were allowed to change their

scorings and see how this would affect the likelihood-of-malignancy.

They were able to show a statistically significant improvement in the classifi-

cation results for 2 out of the 5 readers. However, for one of those readers there was

actually a statistically significant decrease in sensitivity. This reader had an overall

improvement in their accuracy from a vast improvement in their specificity.

As you can see, there is room for improvement in breast MR CAD systems.
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CHAPTER 3
FUNDAMENTALS

In this chapter, we will discuss the fundamentals related to this research. In

the first section, we will describe MRI basics. Breast MRI principles and techniques

will be discussed in the second section. In the third section, we will talk about

artificial neural networks (ANN) and their basic concepts. And in the last section,

we will describe the support vector machine (SVM).

3.1 MRI

Magnetic resonance imaging (MRI) is an imaging technique used primarily in

medical settings to produce high quality images of the inside of the human body [43].

MRI is based on the principles of nuclear magnetic resonance (NMR), a spectroscopic

technique used by scientists to obtain microscopic chemical and physical information

about molecules. The technique was called magnetic resonance imaging rather than

nuclear magnetic resonance imaging (NMRI) because of the negative connotations

associated with the word nuclear in the late 1970’s. MRI started out as a tomo-

graphic imaging technique, that is, it produced an image of the NMR signal in a thin

slice through the human body. MRI has advanced beyond a tomographic imaging

technique to a volume imaging technique. The intensity of a pixel is proportional

to the NMR signal intensity of the contents of the corresponding volume element or

voxel of the object being imaged.

Magnetic resonance imaging is based on the absorption and emission of energy

in the radio frequency range of the electromagnetic spectrum. The human body is
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primarily fat and water, approximately 63% hydrogen atoms. Magnetic resonance

imaging primarily images the NMR signal from the hydrogen nuclei. The proton

(in a hydrogen atom) possesses a property called spin that will cause the nucleus to

produce an NMR signal.

3.1.1 Spin

Spin is a fundamental property of nature for protons, electrons, and neutrons

just like electrical charge or mass. Spin comes in multiples of 1/2 and can be positive

or negative. Individual unpaired electrons, protons, and neutrons each possess a spin

of 1/2. In the deuterium atom (2H), with one unpaired electron, one unpaired proton,

and one unpaired neutron, the total electronic spin = 1/2 and the total nuclear spin

= 1. Two or more particles with spins having opposite signs can pair up to eliminate

the observable manifestations of spin.

Properties of Spin When placed in a magnetic field of strength B, a particle with

a net spin can absorb a photon, of frequency ν, which depends on the gyromagnetic

ratio.

ν = γB. (3.1)

For 1H, γ = 42.58 MHz / T.

3.1.2 T1 Processes

At equilibrium, the net magnetization vector lies along the direction of the

applied magnetic field Bo and is called the equilibrium magnetization Mo. In this
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configuration, the Z component of magnetization Mz equals Mo. Mz is referred to

as the longitudinal magnetization. There is no transverse (Mx or My) component

of magnetization here, as shown in Figure 3.1 on the next page. It is possible to

change the net magnetization by exposing the nuclear spin system to energy of a

frequency proportional to the energy difference between the spin states (E = hν,

h is Planck’s constant). If enough energy is put into the system, it is possible to

change all longitude magnetization into transverse magnetization (Mz=0). The time

constant which describes how Mz returns to its equilibrium value is called the spin

lattice relaxation time (T1). The equation governing this behavior as a function of

the time t after its displacement is:

dMz

dt
=

Mo −Mz

T1

. (3.2)

When the initial Mz = 0, the solution to this equation is:

Mz = Mo(1− e
− t

T1 ). (3.3)

See Figure 3.2 on page 20 for illustration of the spin-lattice relaxation. T1 is

therefore defined as the time required to change the Z component of magnetization

by a factor of 1 − 1
e

= 0.63. If the net magnetization is placed along the -Z axis, it

will gradually return to its equilibrium position along the +Z axis at a rate governed

by T1. The equation governing this behavior as a function of the time t after its

displacement is:
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Figure 3.1: The longitudinal magnetization.

Source: [43]

Mz = Mo(1− 2e
− t

T1 ). (3.4)

Figure 3.3 on the next page shows the spin lattice relaxation time (T1) when

the net magnetization is placed along the -Z axis.

The spin-lattice relaxation time (T1) is the time to reduce the difference be-

tween the longitudinal magnetization (Mz) and its equilibrium value by a factor of

e−1.

3.1.3 Precession

If the net magnetization is placed in the XY plane it will precess about the Z

axis at a frequency equal to the frequency (ν = ∆E
h

) of the photon which would cause

a transition between the two energy levels of the spin. This frequency is called the

Larmor frequency.
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Figure 3.2: The spin lattice relaxation time (T1).

Source: [43]

Figure 3.3: The spin lattice relaxation time (T1) when the net magnetization is placed
along the -Z axis.

Source: [43]

3.1.4 T2 Processes

The time constant which describes the return to equilibrium of the trans-

verse magnetization, Mxy, is called the spin-spin relaxation time, T2 as shown in

Figure 3.4 on the following page.

Mxy = Mxyoe
− t

T2 . (3.5)
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Figure 3.4: The spin-spin relaxation time, T2.

Source: [43]

T1 and T2 relaxation occur simultaneously, and they are dependant on the

physiochemical properties of the tissues. The spin-spin relaxation time T2 is less

than or equal to the spin-lattice relaxation time T1. The spin-spin relaxation time,

T2, is the time to reduce the transverse magnetization by a factor of 1/e. There is

another constant called T ∗
2 , which is the combination of T2, the effect of molecular

interaction, and the dephasing effect caused by inhomogeneities in the fixed field Bo.

The relationship is as follows:

1

T ∗
2

=
1

T2

+
1

T2,inhomo

. (3.6)

3.1.5 Imaging Parameters

Imaging parameters are used to control contrast between tissues. The following

subheadings are the principals parameters that the operator may change and the

effects of each parameter on the image contrast, resolution, etc. It should be noted
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that many of these parameters must be considered simultaneously, since their values

are often interdependent.

Definitions

1. RF Pulse: A brief burst of electromagnetic energy. The energy is applied

at the Larmor frequency, changing the direction of the net magnetization vec-

tor (longitudinal magnetization becomes transverse, and transverse magneti-

zation becomes negative longitudinal magnetization). There are two common

RF pulses, a 90◦ pulse is timed to cause a longitudinal magnetization vector to

become a transverse magnetization vector, and a 180◦ pulse, which changes the

direction of the magnetization vector.

2. Dephasing: The process by which two signals of nearly identical frequencies

change from being in-phase (constructive interference) to being out of phase

(destructive interference).

3. Phase Encoding: One method for localization of MR signals. Once the spins

have been excited by a radiofrequency RF pulse, the net xy-magnetization

within each voxel precesses according to the Larmor equation which says that

precession at higher field strengths is faster. If a gradient field is briefly switched

on and then off again at the beginning of the pulse sequence right after the ra-

diofrequency pulse, the voxel magnetizations will either precess faster or slower

relative to the ones of the central voxels.
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4. Repetition Time (TR): Time between successive applications of RF excita-

tion pulses.

5. Echo Time (TE): Time between the excitation pulse and the formation of the

echo.

6. T1 and T2 Contrasts: T1 -weighted image is formed by imaging relatively

rapidly, with a TR ≤ T1 of the tissues being imaged. In T1 weighted images

fluids tend to appear dark because of their long T1 values. T2 -weighted imaging

is achieved by extending TR, such that most tissues do recover most of their

z magnetization between successive RF excitation pulses. Tissues with a long

T2 will appear as a bright areas of high signal. T1 (T2) contrast: is using the

difference in tissues’ T1 (T2) constants to create a visual difference in the MR

image.

Repetition Time (TR): Affects T1 contrast, scanning time, minimum echo time

(TE) and the number of slices in multi-slice imaging. The TR controls the extent

of recovery of the longitudinal magnetization. If the TR is long the protons can

realign completely between excitations and produce a strong signal. When the TR is

short compared with the T1 relaxation time the equilibrium magnetization is smaller

because of its partial recovery. As a result, T1 contrast is high but the signal is lower

than at longer TR, resulting in a reduced signal-to-noize ratio (SNR).
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Echo Time (TE): Affects T2 contrast, the minimum possible value for TR, the

minimum bandwidth, and the sensitivity to dephasing. A long TE allows more trans-

verse relaxation to occur before measuring the signal. For a given TE, the signal

strength of tissues with long T2 values decreases less than that from tissues with

short T2. Tissues with long T2 values appear relatively brighter when TE is longer

(signal always drops as TE increases).

Field of View (FOV): Horizontal or vertical size of an image. FOV is chosen to

match the size of the anatomic area of interest. Its minimum value is determined by

the maximum magnetic field gradient strength of the MR system.

Affects the spatial resolution, which increases with decreasing FOV, and SNR

(SNR ∝ FOV 2).

Number of Excitations (NEX): Number of times each phase-encoding step is

performed. It is also referred to as the number of signal average (NSA).

Affects the SNR and the acquisition time, both of which increase with an

increasing NEX.

3.2 Breast MRI

Over the last decade we have seen breast MRI develop from a technique appro-

priate only to a limited number of research institutions, to a clinically useful imaging

too. Breast MRI currently has a role in some clinical situations (e.g. evaluation of

breast prostheses, assessment of the post-surgical breast) and is rapidly defining its

role in others. As breast MRI expands from a research tool to a clinical situation, it is
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clear that the driving force for future development of the technique will lie not with re-

searchers with an interest in a particular imaging modality (MRI), but with clinicians

involved in the whole scope of breast diagnosis, supported by the multi-disciplinary

breast team.

The MR imaging technique is highly sensitive to physical, chemical and bio-

logical characteristics of tissues and fluids. The ability of the radiologists to visualize

and detect abnormality may be affected by [36]:

1. Image contrast,

2. Signal-to-noise ratio,

3. Spatial resolution,

4. Temporal resolution,

5. Artifacts.

These factors affecting image quality are in turn determined by a large num-

ber of tissue and imaging parameters, in addition to the inherent capabilities of the

particular MR imaging system used. Optimization of an MR protocol is therefore

complex and will be governed to some extent by the motivation for the examination

(for example, detection of disease recurrence, screening) and in part by the nuclear

magnetic resonance (NMR) characteristics of the tissues to be imaged [36].
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3.2.1 Uptake of Contrast Agent

In addition to inherent differences in tissue relaxation times, which are the

principal source of signal contrast in MR images, exogenous contrast agents are often

administered clinically to enhance the increased conspicuity of certain tissues [91]. T1-

shortening agents such as gadopentetate dimeglumine (Gd-DTPA) are used when the

diseased tissue and normal tissue have similar MR properties but respond differently

to the contrast agent. The reasons for contrast agent use in the breast include [86]:

improvement in sensitivity and specificity, better differentiation of structures, mea-

surement of tissue perfusion, and conspicuty of cancers.

MRI is able to distinguish benign from malignant tissues by exploiting differ-

ences in contrast agent kinetics between these tissue types. All clinical breast MRI

studies use one of the commercially available extracellular contrast agents. These

agents are freely diffusible, that is, they readily pass from the intravascular space into

the interstitium and therein give rise to parenchyma enhancement [74].

3.2.2 Optimization of Sequence Protocols

This section deals with image quality issues and how imaging factors interrelate

to affect image quality. The following image quality characteristics are considered:

signal-to-noise ratio (SNR), tissue contrast, spatial resolution, temporal resolution,

and artifacts.



www.manaraa.com

27

3.2.2.1 Signal-To-Noise Ratio (SNR)

Table 3.1 on page 29 summarizes methods of increasing image SNR and de-

scribes their effects on other image quality factors. It is worth noting that for the

same volume of coverage and the same contrast, 3D sequences produce images with

a higher SNR than 2D sequences, albeit with a longer acquisition time [39].

3.2.2.2 Image Contrast

The imaging parameters determining image contrast are TR, TE, flip angle,

and flow compensation. Some priori knowledge of tissue parameters is useful when

choosing imaging parameters.

3.2.2.3 Spatial Resolution

Methods to increase the spatial resolution are summarized in Table 3.2 on

page 29, together with relative disadvantages. In designing a protocol for breast

MRI, optimization of the spatial resolution will be determined by the nature of the

examination. An increase in spatial resolution will increase acquisition time and

therefore reduce temporal resolution, hence there is a need to balance the examination

requirements with the capabilities of the MR system [91].

3.2.2.4 Temporal Resolution

In general, the time required to obtain data for one image is the acquisition

time (TA), is determined by the number of phase-encoding steps Nph , the repetition
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time of the sequence (TR) and the number of excitations (NEX) [36]:

TA = TR ·Nph · NEX. (3.7)

A reduction in the acquisition time is desirable for a number of reasons, includ-

ing dynamically following a contrast agent as it passes through the vascular system

and/or through a tissue, and also for minimizing artifacts due to motion. Each of the

parameters in the above equation may be reduced in order to increase the temporal

resolution. The consequences of reductions in these parameters on other indicators

of image quality are summarized in Table 3.3 on page 30.

3.2.2.5 Motion Artifacts

Motion artifacts occur mainly due to:

1. Natural motion of body (heart, lungs, etc),

2. Unintended patient motion.

MR images are acquired over a period of time (hundreds of milliseconds to several

minutes) that is too long to “freeze” the movement of anatomic structures. MR

examinations, and in particular dynamic contrast-enhanced MR imaging, may require

the patient to remain in the scanner for 30 min or longer. During this time, the patient

may also move, compromising, for example, the quality of subtracted images.

Motion during image acquisition blurs the images, reducing the apparent spa-

tial and contrast resolution and hampering image intensity calculations. Methods to
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Table 3.1: Consequences of adjusting imaging parameters to increase the signal-to-
noise ratio.

Parameter Change Disadvantages
Increase FOV, slice thickness Decrease spatial resolution
Increase NEX Increase the acquisition time
Decrease receiver bandwidth Increase motion artifacts

increase minimum possible echo time

Note: FOV - field of view, NEX - number of excitations. Adapted from [36].

Table 3.2: Consequences of adjustments in imaging parameters to increase the spatial
resolution.

Parameter Change Disadvantages
Increase matrix size, Increase acquisition time

phase-encoding direction

Increase matrix size, Decrease bandwidth
frequency-encoding Increase artifacts
direction Increase minimum echo time

Decrease field of view Decrease signal-to-noise ratio
Increase artifacts

Adapted from [36].

overcome motion artifacts include breast compression, spatial pre-saturation, ghost

re-direction, gating, and flow compensation [44].

Summary MRI is a good noninvasive modality for producing images from human or

any biological system that travels the structure, metabolism, and function of internal

tissues and organs extending the range of human vision [61]. MRI can produce

images at higher speed (fast imaging), higher resolution (micro-imaging), and higher



www.manaraa.com

30

Table 3.3: Consequences of adjustments in imaging parameters to decrease the ac-
quisition time.

Parameter Change Disadvantages
Decrease TR Decrease SNR
Decrease number of Decrease spatial resolution

phase encoding steps
Decrease number of slices Decrease spatial coverage
Increase bandwidth Decrease the SNR

Adapted from [36].

information content (combined anatomy, metabolism, and function). It will have high

impact in biology and neuroscience in the coming years [61].

3.3 Neural Network Design

Learning from examples, the problem for which neural networks were designed

to solve, is one of the most important research topics in artificial intelligence [37].

A possible way to formalize learning from examples is to assume the existence of a

function representing the set of examples and, thus, enabling the function to generalize

to yet unseen examples. This can be called function reconstruction from sparse data

(or in mathematical terms, depending on the required precision, approximation or

interpolation, respectively). Within this general framework, the central issues of

interest are the representational power of a given network model (or, in other words,

the problem of model selection) and the procedures for obtaining the optimal network

parameters. The tasks of parameter estimation and model selection are of crucial

importance for the success of real world neural network applications. Model selection

or the specification of a network topology is a key methodological issue.



www.manaraa.com

31

Figure 3.5: General schematic of a three-layer, feed-forward neural network. p is an
input node output, 1b is a hidden node bias, 1n is a hidden node input, h is a hidden
node output, 2b is an output node bias, 2n is an output node input, and o is the
network output.
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Figure 3.5 on the preceding page shows a diagram of a three-layer neural

network. Each of the circles in the figure is called a unit (or neuron), and represents an

input-output transfer function. Neural network researchers have chosen from a variety

of transfer functions; among the more popular ones are the logistic-sigmoid and the

tangent-sigmoid functions. In this study we use the latter, which, mathematically, is:

f(n) = tansig(n) =
en − e−n

en + e−n
, (3.8)

where both the input, n, and the output, f(n), are real scalar-values. In vector form,

~y = f(~n), each element of ~n is evaluated, so that yi = f(ni) for the ith element of ~y.

The columnar arrangements of the units are called layers. From left to right in Fig-

ure 3.5 on the page before, the columns are labeled as the input, hidden, and output

layers. Only the hidden and output units perform the nonlinear (tangent-sigmoid)

mapping; the input units have identity transfer functions. In our exposition we focus

on a three-layer network because the system used in this work was a three-layer sys-

tem, but in general, any number of layers can be used. Layers are connected to each

other by a system of weights, which multiplicatively scale the values traversing the

links. In the diagram, we observe that there are two sets of weights: one connecting

the input to the hidden layer, and the other from the hidden to the output layer. The

values from weights converging on a given unit are added to form n [49]. If we think

of the inputs as a vector ~p of dimension R, then the set of weighted sums that form

the input to the hidden layer containing S units is:
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1~n = 1W ~p + 1~b, (3.9)

where 1W is an S × R matrix, the ith row of which forms the set of weights that

the ith hidden unit uses to scale each element of ~p (the superscript “1” to the left

of the symbol indicates this is for the first layer in the network). The elements of

the R × 1 vector 1~b are called the bias values of each unit; the bias values add an

additional degree of freedom by allowing control of a constant offset that is applied

to each input. There is a simplification that can be done to make the notation easier

to follow. If the input ~p is augmented with a single new element pS+1 = 1, then the
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bias portion can be combined into the weight vector. This gives:

1~n = 1W ~p + 1~b · 1 (3.10)

=



1w1,1
1w1,2 . . . 1w1,R

1w2,1
1w2,2 . . . 1w2,R

...
...

. . .
...

1wS,1
1wS,2 . . . 1wS,R





p1

p2

...

pR


+



1b1

1b2

...

1bS


(3.11)

=



1w1,1
1w1,2 . . . 1w1,R

1b1

1w2,1
1w2,2 . . . 1w2,R

1b2

...
...

. . .
...

...

1wS,1
1wS,2 . . . 1wS,R

1bS





p1

p2

...

pR

1


(3.12)

=

(
1W 1~b

)


~p

1

 (3.13)

= 1W ∗~p ∗. (3.14)

For the rest of the notation, the ∗ will be dropped to make the equations easier

to read, but all other vectors are of this augmented form. The output of the hidden

layer is an S × 1 vector ~h given by:

~h = f(1~n) = f(1W ~p). (3.15)
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The outputs of the hidden layer are fed-forward (a characteristic that gives

these networks their name) to the output layer, whose outputs are computed as were

those of the hidden layer. Specifically, let 2W be an S + 1 × O matrix, the ith row

being the set of weights which scale each element of ~h for the input of the ith output

unit (The S + 1 row is the bias). The output vector ~o (of dimension O) is thus found

by:

~o = f(2~n) = f(2W~h). (3.16)

The overall system essentially performs a nonlinear mapping from an input

space to an output space with dimensions R and O respectively. The weights and

biases are the adaptive parameters of the system; modifying them appropriately

constitutes the network’s learning to approximate a desired function with the same

domain and range.

3.3.1 Neural Network Learning

Learning methods used for adaptive neural networks (i.e., those networks that

are able to change their weights) can be classified into two major categories [37]:

1. Supervised learning which incorporates an external teacher, so that each

output unit is told what the desired response is for specific input signals. During

the learning process global information may be required. An important issue

concerning supervised learning is the problem of error convergence, i.e., the

minimization of the error between the desired and actual unit output values.
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The aim is to determine a set of weights which minimizes the error. One well-

known method, which is common to many learning paradigms, is least mean

square (LMS) convergence.

2. Unsupervised learning uses no external teacher and is based upon only lo-

cal information. It is also referred to as self-organization, in the sense that

the network self-organizes the input data and detects any emergent collective

properties.

A neural network could learn off-line if the learning phase and the operation

phase are distinct. A neural network learns on-line if it learns and operates at the

same time. Usually, supervised learning is performed off-line, whereas unsupervised

learning is performed on-line.

As mentioned in section 3.3 on page 30, appropriately modifying the adaptive

parameters of the system constitutes the network’s learning to approximate a desired

function with the same domain and range. Next we discuss this procedure, in more

detail.

Suppose we have an input set, P , and a set of desired targets, T , each with

Q elements:

{~p1,~t1}, {~p2,~t2}, . . . , {~pQ,~tQ}. (3.17)

We want to choose the network parameters so as to minimize the mean-squared

error (MSE) between the actual network output O and the desired output T :
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MSE = F =
1

Q

Q∑
i=1

||~ti − ~oi||2. (3.18)

Note that since the output O is a function of the weights, the MSE is a

nonlinear surface parameterized by the weights. Training the network is equivalent

to searching for the minimum value of the MSE. The MSE, F , is approximated by

iteratively presenting the inputs, finding O, and at each of the iterations, computing:

F̂ (k) =
1

Q

Q∑
i=1

||~ti(k)− ~oi(k))||2, (3.19)

where ~ti(k), ~oi(k), are the desired and actual output of the ith element (sample), at

the kth iteration (epoch). The learning rule is the method used to update the weights

after each of the training iterations. The method used here is the gradient-descent

algorithm, which chooses its “steps” on the error surface to be the direction in weight

space that most rapidly decreases the error. In equation forms, the gradient-descent

method updates the weights according to:

mwi,j(k + 1) = mwi,j(k)− α
∂F̂

∂mwi,j

, (3.20)

where mwi,j are the elements of the mth layer weight matrix. The parameter α is

known as the learning rate; this controls the size of the weight adaptation increments.

Considering just the update of the weights:

∆mwi,j = −α
∂F̂

∂mwi,j

. (3.21)
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The challenge of computing the partial derivatives in the above equations is

overcome with an algorithm known as backpropagation [35,67,85].

Backpropagation Algorithm Training the network, or calculating the updates,

proceeds as follows for each training input, ~pj, with corresponding desired output, ~tj:

1. Calculate the output of each layer using the weights and transfer functions of

the units. The network output, ~oj, is the output of the last layer.

2. For each layer, the unit sensitivities to changes in the summed inputs mni are

calculated.

For the output layer (layer M , for a three-layer network M = 2), the error does

not directly depend on the weights, but using the chain rule:

∆mwi,j = −α
∂F̂

∂ Mni

∂ Mni

∂ Mwi,j

(3.22)

∂F̂

∂ Mni

=
∂F̂

∂ Moi

∂ Moi

∂ Mni

(3.23)

= (oi − ti)f
′(Mni) (3.24)

∂ Mni

∂ Mwi,j

= hj. (3.25)

Putting these values back into the Equation 3.21:

∆Mwi,j = −α(oi − ti)f
′(Mni)hj (3.26)

= α(ti − oi)f
′(Mni)hj. (3.27)
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So the update for the output node is related to the difference between the

current output and the target (oi − ti), the derivative of the transfer function

at the current activation point (f ′(Mni)), the output of the previous node (hj),

and the learning rate (α). (oi − ti)f
′(Mni) can be thought of as the fractional

correction of an input, based on the error of the output (i.e. it maps the error

of the output of the transfer function to an error of the input of the transfer

function).

For the hidden layers (m = 1, 2, . . . ,M − 1), the update is dependent upon the

next layer’s (m+1) update. This is what gives the term backpropagation. The

error at the output is computed, and used to update the weights for the output

layer. The error is then propogated back to the previous layer:

∆mwi,j = α

[m+1S∑
k=1

m+1wk,j(ok − tk)f
′(Mnk)

]
f ′(mnj)pi. (3.28)

To break this into it’s parts, m+1wk,j(ok − tk)f
′(Mnk) is the error in the weight

from the jth hidden node to the kth output node. The summation gives the

total error of the output of the jth hidden node. This is mapped back to the

error of the input of the jth hidden node by multiplying it by the derivative of

the transfer function. Then the weight to the input node is updated based on

the learning rate (α) and the current value of the input (pi).

The training continues until a criterion has been satisfied (for example a suf-

ficiently low training MSE); Presentation of the whole training set is known as an
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epoch.

Practical Notes A larger number of neurons allow the system to approximate

functions of greater complexity. The caveat, however, is that while more units (and,

consequently, more parameters) can fit the training data better, the system will likely

be more “whimsical” between the training points as a result of its greater degree of

freedom. The upshot is that unseen (test) data will be poorly fit to the function

desired. In neural net jargon, this is called poor generalization. On the other hand,

too few parameters relative to the training data distribution and even the training

set won’t be adequately matched.

The initial conditions of the network also have a strong influence on the train-

ing. The steepest descent algorithm is relatively slow and has a tendency to get

trapped in local minima of the error surface (where the gradient is zero) [35].

3.4 Support Vector Machines (SVM)

SVMs are a type of machine learning algorithm, which have been successfully

applied to a wide range of pattern recognition problems. Compared to artificial neural

networks (ANNs), they are faster, can be used with larger numbers of features, are

easier to interpret, and are deterministic. They find an optimal separating hyperplane

between data points of different classes in a (possibly) high dimensional space. The

actual support vectors are the points that form the decision boundary between the

classes. Here is a simple example in 2D where a user is trying to separate data of two

classes of samples (red circles and green squares) as shown in Figure 3.6.
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Figure 3.6: 2D example of separating data to two classes.

Source: [28]

One of the main advantages of SVMs is that they are maximal margin classi-

fiers. For example, in Figure 3.7 on the following page, D is a better separator than

A, B or C since it will be more likely to classify new samples that are close to the

current decision boundary.

A SVM is a supervised learning technique first discussed by Vapnik [11, 93].

An SVM is a maximum-margin hyperplane that lies in some space. Given train-

ing examples labeled either “yes” or “no”, a maximum-margin hyperplane splits the

“yes” and “no” training examples, such that the distance from the closest examples

(the margin) to the hyperplane is maximized. The use of the maximum-margin hy-

perplane is motivated by statistical learning theory, which provides a probabilistic

test error bound which is minimized when the margin is maximized. If there exists

no hyperplane that can split the “yes” and “no” examples, an SVM will choose a

hyperplane that splits the examples as cleanly as possible, while still maximizing the

distance to the nearest cleanly split examples.

The original SVM was a linear classifier. However, Vapnik suggested using
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Figure 3.7: Maximal margin classifiers.

Source: [28]

the “kernel trick” [1]. In the kernel trick, every time a linear algorithm uses a dot

product, it is replaced by a nonlinear kernel (if f is any function in any context, then

the kernel of f is a certain equivalence relation on the domain of f which is defined

in terms of f) function. This causes a linear algorithm to operate in a different space.

For SVMs, using the kernel trick makes the maximum margin hyperplane be fit in a

feature space. The feature space is a non-linear map from the original input space,

usually of much higher dimensionality than the original input space. In this way,

non-linear SVMs can be created [24]. Support Vector Machines non-linearly map

their n-dimensional input space into a high dimensional feature space. In this high

dimensional feature space a linear classifier is constructed. Two results make this

approach successful:
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1. The generalization ability of this learning machine depends on the VC dimension

(a measure of the capacity of a learning algorithm) of the set of functions that

the machine implements rather than on the dimensionality of the space. A

function that describes the data well and belongs to a set with low VC dimension

will generalize well regardless of the dimensionality of the space.

2. Construction of the classifier only needs to evaluate an inner product between

two vectors of the training data. An explicit mapping into the high dimensional

feature space is not necessary.
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CHAPTER 4
METHODS

The general hypothesis that inspires this work is that computer-aided diag-

nosis (CAD) can improve the accuracy of expert and non-expert readers

for classifying suspicious lesions on BMRI.

We propose these four specific aims:

1. Develop a method to segment BMRI datasets into regions of interest (lesions

and ducts) and background.

2. Select and compute the shape, texture, and contrast enhancement pattern of

suspicious lesions in BMRI.

3. Devise classifiers to distinguish benign from malignant lesions, using the features

identified in the previous aim.

4. Assess the performance of the classifiers for expert and non-expert readers by

using a set of pathologically-proven lesions from BMRI data.

This chapter describes the computer interface that we have developed to load

and display BMRI datasets, the datasets we used, and then discusses each of the four

specific aims in detail.

4.1 Image Viewer

Figure 4.1 on page 46 shows the BMRI image viewer and loader. The im-

age viewer loads a BMRI image sequence and displays orthogonal, 2D cross-sections
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through the BMRI data and provides window/level control. Multiple imaging se-

quences can be loaded simultaneously (eg, T1 and T2 weighted images, pre- and

post-contrast images) so that direct comparisons can be made. Standard region of

interest tools are available in the image viewer to mark suspicious masses or lesions.

After lesions of interest have been marked, they can be saved to a file for subsequent

review and analysis. Several analysis tools are also available in the image viewer,

e.g., for image subtraction. Radiologists commonly review difference images (i.e.,

post-contrast minus pre-contrast) to increase the conspicuity of enhancing lesions,

which includes most breast cancers. This is especially helpful when the lesion or le-

sion background exhibits high signal prior to contrast administration. It is also useful

for the radiologist to assess the enhancement kinetics of a suspicious mass on BMRI,

often called the “time-intensity” curve. Such curves are generated from a series of

post-contrast images captured at different times. The viewer also includes tools for

image segmentation, such as adaptive thresholding, fixed thresholding, and grayscale

morphology, which can be used interactively to identify lesions of interest on BMRI.

Although a fully automated segmentation system would be highly desirable, it re-

mains a difficult problem. Allowing some user interaction increases robustness and

reduces algorithmic complexity, but still offers real benefits such as increased diag-

nostic confidence and accuracy. A final layer of tools in the image viewer includes

advanced functions for analyzing pre-selected lesions. These functions can extract

features (i.e., shape, size, texture) from the selected lesions and classify lesions of

interest as benign or malignant. The segmentation and classification processing are
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Figure 4.1: The image view showing the pre-contrast and four post-contrast images.
Two enhanced regions: The first region in surrounded by a circle, and the second is
surrounded by a box (Case: 6922, slice: 18).

described next.

4.2 Datasets

Archived, 80 pathologically-proven lesions imaged by BMRI were used to train

and test the CAD system collected from the University of Pennsylvania (UPENN).

43 of the lesions were malignant (two ductal carcinoma in situ, DCIS, ten invasive

ductal carcinoma, IDC, four invasive lobular carcinoma, ILC, three rim enhancement,
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and most malignant lesions has more than 4 lymph nodes involved). 37 were benign

lesions (seven fibrocystic, and five fibroadenoma).

For each patient, four different image sequences are acquired: One pre-contrast,

and three post-contrast. For each image in the datasets, the in-plane resolution is

0.35mm, and the through-plane resolution is three mm. These studies were prepro-

cessed to remove all patient information. Data are tracked by a unique serial number

that is assigned to each dataset. Each set of BMRI data is accompanied by a definitive

biopsy result that characterizes the lesion as benign or malignant.

4.3 Specific Aim 1

Develop a Method to Segment Breast MRI Datasets

Segmentation of suspicious regions is the important first step for a variety of

image analysis tasks. There is a wide range of image segmentation techniques in the

literature, some considered general purpose and some designed for specific classes of

images [42].

For the breast MR images, skin and chest wall segmentation is the first task,

then the enhanced regions are extracted.

The segmentation processing is used to identify suspicious lesions and mark

them for subsequent classification. The first step is to find the chest wall bound-

ary, since all regions inside of the chest are considered extra-mammary. After chest

wall segmentation, the subsequent lesion detection takes advantage of the intensity

enhancement in breast lesions when the post-contrast image is compared to the pre-

contrast image [65]. It is important to mention that the regions that enhance in
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BMRI are breast lesions, ducts, lymph nodes, and blood vessels. However, normal

breast parenchyma does enhance progressively, but weakly. Only the first two region

enhancements are significant, as it is perfectly normal for blood vessels to enhance.

4.3.1 Skin and Chest Wall Segmentation

Two methods were examined for finding the chest wall. The first method used

the Hough transform. The Hough transform approuch was eventually abandoned in

favor of a method using dynamic programming.

The Hough transform is used to detect lines in image processing applications

[10, 27]. The line is a parametric form with two parameters, the angle of the line

θ, and intercept of the line (y = a + bx, or alternatively, a point from the line

p is p = x cos(θ) + y sin(θ)). Each pixel in image space contributes to a discrete

number of possible lines that could pass through that point. Because of constructive

interference, a real line in the image is mapped to a local maxima in Hough parameter

space. Figure 4.2 on the following page shows the following four steps for the Hough

transform method:

1. The two intersection points between the air and the breast skin (at the top and

bottom of the image) are marked.

2. A virtual vertical line is drawn connecting the two points.

3. The Hough transform is applied to the image on the right side of the virtual

line.

4. The strongest line is found (on the right side of the virtual line), and chosen as
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the chest wall.

The Hough transform method was abandoned because in most datasets the

chest wall is not a straight line.

Figure 4.2: The Hough transform approach starts with marking the two intersection
points between the air and the breast skin (the red x marks in the left image), then
drawing the line that connects these two points (the red line in the left image), finally
applying Hough transform on the right side of the line. (Case: 1606, slice: 3).

Dynamic programming (DP) can be used as a path finding algorithm that

is capable of finding the optimum path in a tree. [16, 88] Every pixel in an image

can be thought of as a node, then the goal is to find the path associated with the

lowest/highest cost from the top to the bottom of the image.

For the DP method, we start by combining the pre and post-contrast sequences

to decrease the noise and increase the contrast between the chest wall and the sur-
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rounding tissue. Then, the images were blurred using 2D Gaussian filter of size k×k,

where k = 2d2σe+ 1 = 9, and for this application σ = 2. d e represents the “ceiling”

operator (i.e., round up to closest integer). This gives an odd sized filter, with two

standard deviations in each direction. If a different level of blurring is requested,

then k is automatically recalculated (see Figure 4.4 (b). After blurring the images, a

linear ramp filter (5× 7), as shown in Figure 4.3 was applied to highlight the skin-air

boundary. It was also determined that this was successful in highlighting the chest

wall (See Figure 4.4 (c).

Filter =


−4 −3 −2 −1 0 1 2 3 4
−4 −3 −2 −1 0 1 2 3 4
−4 −3 −2 −1 0 1 2 3 4
−4 −3 −2 −1 0 1 2 3 4
−4 −3 −2 −1 0 1 2 3 4


Figure 4.3: The linear ramp filter that used to highlight the skin air boundary.

Then, the skin-air boundary was found using dynamic programming on each

slice. Since the edge image (Figure 4.4 (c)) was used as the cost function, the brightest

edge was almost always the skin-air boundary. Because the boundary can follow an

almost horizontal path, the dynamic programming step searched for the best path

within two steps of the current one (x+ i, y−1), i = −2,−1, 0, 1, 2, where x, y are the

location of the current pixel (see Figure 4.4 (d)). Now that the skin has been found,

it is possible to mask out the breast tissue and narrow the search space for the chest

wall. This is necessary because, in general, the breast tissue can be heavily textured,
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and this would appear as bright edges to follow in dynamic programming.

The area to be masked off was computed as follows:

1. The average x location for the first 10 pixels along the skin boundary was

calculated (x̄top)

2. The same was found for the bottom 10 pixels (x̄bottom)

3. A fixed offset was applied to each so that more of the breast tissue would be

included. (The boundary is only the edge of the breast, not the entire breast

tissue).

x̄′
top = x̄top + o,

x̄′
bottom = x̄bottom + o.

For our purposes, o = 35.

4. A virtual line was drawn between the two points, and all points to the left of

that line were considered masked off.

The chest wall was then found using a slightly modified version of dynamic

programming. Because the chest wall is a nearly vertical line in the image, the cost

search was penalized for moving diagonally. Specifically the cost was computed as

C ′ = C − |i|p.

Where C was the cumulative cost for a pixel, i is the horizontal distance that was
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moved to get to that location (for the chest wall we constrained the search to x± 1),

and p was a fixed penalty for a diagonal move (we chose p = 500).

After segmentation of the skin and chest wall, a new file was created which

labeled all of the pixels into one of seven regions:

1. Air,

2. Skin,

3. Breast Tissue,

4. Breast line,

5. Between breast line and chest wall (probably breast tissue),

6. Chest wall,

7. Inside chest.

See Figure 4.5 on page 54 for an example showing the results after region labeling.

4.3.2 Segmentation of Enhanced Regions

First, a difference image is computed by subtracting the pre-contrast and post-

contrast image. Two levels of thresholding are then applied. These thresholds are

used to identify suspicious lesions and separate them from the background. The first

level of thresholding is a more restrictive threshold. It has greater discrimination

between ordinary regions and enhancing regions. However, because of this increased

discrimination, it often leaves out parts of the enhancing regions that we would like
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(a) (b)

(c) (d)

Figure 4.4: (Case: 1806, slice: 15) a) The original image. b) A blurred image using
2D Gaussian filter. c) The cost function computed from the edge image. d) The skin
path found by DP.
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(a) (b)

Figure 4.5: This figure shows Case: 1806, slice: 15. a) The original image with the
automatic skin path overlayed on top in the red line. b) The seven regions mask with
the breast tissues in yellow and inside the chest in green.

to keep. The second threshold is less restrictive, but it is constrained such that only

regions that were present in the first segmentation are kept in the second.

Four methods were examined for automatic selection of the threshold levels.

First, a constant threshold was applied to all the datasets. This method might be

acceptable for CT and mammography, but not for BMRI, because there are no abso-

lute values for the BMRI signal intensities. As a result, there was no single threshold

value that performed adequately on all datasets.

Second, the grayscale histogram was plotted in the hope that an obvious dis-

tinction could be made between enhanced regions and non-enhanced regions. How-

ever, the histogram was typically unimodal, so no obvious threshold value could be
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selected.

Third, the thresholds were computed as some percentage of the maximum

value in the data. This approach was ineffective because blood vessels enhance very

brightly, and confound the maximum value.

Finally, an adaptive region growing algorithm was applied [78]. Region growing

was used for this task, because it is simple, effective, and widely used method for image

segmentation. The region growing algorithm starts with a threshold value specified

by the user. This is used to find where the lesions should be. In general, this is

a fairly high threshold, used to find a subset of the true lesion. Then, connected

component labeling is used to find all the initial lesions. Some of these may end

up merging together. After labeling the lesions, the algorithm continues to find the

minimum and maximum values for each lesion. The minimum and maximum values

are found for each lesion (Vi,max, Vi,min), and at the same time, a table of lesions is

created. This is only for the lesions as they stand, no adaptation occurs at this stage.

Then, for all lesions in the table we use adaptive region growing to expand the lesion

boundaries [9]:

1. A stack-based 3D region growing algorithm is applied to the volume. The

volume is rastered through, and each pixel that matches the current lesion label

is pushed onto the stack. If this pixel has not been accessed before, it’s neighbors

are also pushed onto the stack to be checked.
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2. A pixel is added if it falls within the range of [Tmin, Tmax].

Tmin = (1− τ)
Vi,min + Vi,max

2
, (4.1)

Tmax = (1 + τ)
Vi,min + Vi,max

2
, (4.2)

Where τ is a tolerance parameter. τ has a range of [0,1]. A value of 1 would

allow all pixels below the average (of max and min, not a global average) to be

included, and pixels less than twice the average Tmin = 0, Tmax = Vi,min+Vi,max.

A value of 0 would force all pixels to be equal to the average value Tmin = Tmax =

Vi,min+Vi,max

2
. Neither situation is generally desireable. More common values are

between [0.1, 0.5]. (Currently, we ignore the Tmax threshold, as it tends to

remove the center of bright regions.)

3. As pixels are added to the region, Vi,min and Vi,max along with Tmin and Tmax are

updated. So if you started with a bright region with a large amount of moderate

valued pixels next to it, the threshold range should decrease to accomodate the

change.

4. Also, as regions grow, it is checked to see if they become adjacent with another

region. If they do, then the region stops growing, and the other region is

considered equivalent to the current region.

Now that all regions have been grown, equivalences are sorted out, i.e., regions that

grew together are merged into one region.

The next step used 3D connected components analysis is to label the enhanced
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regions. Figure 4.6 on the next page shows the pre-contrast and the three post-

contrast of slice 9 of a dataset, Figure 4.7 on page 59 shows the difference images

between the pre-contrast and each of the post-contrast, and Figure 4.8 on page 59

shows the labeled regions in the thresholded images.

4.3.3 Segmentation Using Morphological Operations

A gray-level morphological algorithm was used to improve the enhanced region

segmentation. It has been shown that a connectivity algorithm combined with gray-

level morphological filter improved the segmentation of tortuous coronary arteries

from 3D MRI [23].

The morphological filter starts by computing the gradient of the image:

G(x, y, z) =
√

dx2 + dy2 + dz2 , (4.3)

where I(x, y, z) is the image voxel intensity at location (x, y, z), and

dx = I(x + 1, y, z)− I(x− 1, y, z), (4.4)

dy = I(x, y + 1, z)− I(x, y − 1, z), (4.5)

dz =
Sx,y

Sz

(I(x, y, z + 1)− I(x, y, z − 1)) . (4.6)

Sx,y and Sz are the spacing in the x, y and z dimensions, respectively. The normaliza-

tion for dz is necessary because in our datasets the in-plane pixel spacing is isotropic,

but there may be an order of magnitude difference between the in-plane and longi-
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Figure 4.6: The pre-contrast and three post-contrast images. The lesion is obvious
in the post-contrast images, but is barely visible in the pre-contrast images. ( Case:
5489, slice: 9).
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Figure 4.7: The difference images between the pre-contrast and each of the three
post-contrast images (Case: 5489, slice: 9)

Figure 4.8: The labeled regions using 3D connected component algorithm (Case:
5489, slice: 9)
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tudinal spacings. This normalization effectively assumes a linear interpolation in the

Z direction. Also, the gradient is assumed to be 0 across image boundaries (e.g.,

I(−1, 0, 0) = I(0, 0, 0)). Then, for n iterations, a graylevel morphological erosion is

applied; I ′(x, y, z) = I(x, y, z)−G(x, y, z), if I ′(x, y, z) <= 0, I ′(x, y, z) = 0. Finally,

for n iterations, a graylevel morphological dilation is applied; If I ′(x, y, z) > 0, then

I ′(x, y, z) = I(x, y, z) + G(x, y, z). This method does not effect regions of homogene-

ity, so large, approximately constant lesions are not changed. Only regions with a

large gradient are affected. Thus, objects like blood vessels, which are very narrow,

are diminished.

In Figure 4.9 on the following page, The gradient was able to highlight the

blood vessels. In Figure 4.10 on page 62, in the morphology images tubal objects,

like blood vessels, are diminished.

4.4 Specific Aim 2

Select and compute the shape, texture, and contrast enhancement

pattern of suspicious lesions in BMRI.

Region shape, texture, and intensity kinetics features were used to character-

ize the enhanced lesions [4, 45, 73]. The features computed from the BMRI lesions

follow three types: shape-based features (volume, area, radial length, spiculation, and

perimeter length), texture-based features (compactness), and the special BMRI fea-

tures (time/intensity curve, and relative intensity). The first two types were proven to

be useful in mammographic masses classification [4, 45], whereas the third type was

added to use the extra information existed in BMRI as a result of using a contrast-
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Figure 4.9: In the top left corner: the original image, followed by the gradient of the
three post-contrast sequences computed using Equetion 4.3 on page 57. The gradient
was able to highlight the blood vessels. (Case: 5489, slice: 26)
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Figure 4.10: In the top left corner: the original image, followed by the three post-
contrast sequences after applying the gray-level morphological algorithm. Blood ves-
sels are diminished. (Case: 5489, slice: 26)
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enhanced agent [73,90].

The following features were computed from each lesion. In all these equations,

N is the number of voxels in the lesion, and nk is the number of voxels in the kth

slice of the lesion. (Some lesions may only be present on one slice.)

Because of the non-isotropic voxels, many features must be computed on a

slice by slice basis, and then the value for the lesion was computed based on the

minimum, maximum, summation, average, and root mean square of the values for

each slice.

The center of mass of the lesion (~C) is computed from

~C =


x̄

ȳ

z̄

 , (4.7)

where

x̄ =
1

N

N∑
i=1

xi,

ȳ =
1

N

N∑
i=1

yi, (4.8)

z̄ =
1

N

N∑
i=1

zi,

where (xi, yi, zi) is the location of the ith voxel in the lesion.
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For each slice k, the center of mass of the lesion (Ck) is computed using

~Ck =


x̄k

ȳk

zk

 , (4.9)

where

x̄k =
1

nk

nk∑
i=1

xi, (4.10)

ȳk =
1

nk

nk∑
i=1

yi.

4.4.1 Shape-based Features

The volume of the lesion is computed from:

V = N dx dy dz , (4.11)

where dx, dy, dz is the spacing in the x, y, z directions, respectively, and N is the

number of voxels in the lesion. For most of the sequences dx = dy = 0.35mm, and

dz = 3mm.

For each slice k, the area is computed using

Ak = nk dx dy. (4.12)
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The radial length for each boundary point is computed using

Rj,k =
√

(xj,k − x̄k)2 + (yj,k − ȳk)2 , (4.13)

where (xj,k, yj,k) is the location of the jth boundary voxel on slice k.

Spiculation is computed as the standard deviation of the radial length as shown

in Figure 4.11 on the following page

Spiculationk =

√∑mk

j=1(Rj,k − R̄k)2

mk − 1
, (4.14)

where mk is the number of boundary voxels on slice k

The perimeter length for a given slice is the number of boundary pixels lperimeter =

mk on that slice.

4.4.2 Texture-based Features

The compactness of a lesion is computed using

Compactnessk =
m2

k

4πnk

. (4.15)

All of the previous features have been proven to be very good at characterizing

breast lesions in mammography [5, 45].
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Figure 4.11: Spiculation Measurements: Cm is the center of mass, P is a boundary
pixel, and φ is the orientation of P

4.4.3 BMRI Features

In BMRI, there is a need to distinguish between blood vessels (non-suspicious

enhancing lesions) and other enhancing lesions that should be further evaluated. To

accomplish this, additional feature was computed.

For each lesion the time/intensity curve was calculated using:

Īpost,i − Īpre

Īpre

× 100% , (4.16)

where Īpre is the average value of the signal intensity in the pre-contrast image, and

Īpost,i is the average value of the signal intensity in the ith post-contrast image [90].

Previous studies have shown that blood vessels exhibit a second wash-in phase. As-

suming BMRI sequences have sufficient temporal resolution to capture a second wash-



www.manaraa.com

67

in phase, the time-intensity curve of a blood vessel might look like the curve shown

in Figure 4.12 on the next page. [90]. Vascular enhancement kinetics were used to

identify and reject blood vessels.

Since some of the datasets we have used do not have sufficient temporal reso-

lution to capture a second wash-in phase, the time-intensity curve of a blood vessel

looked like the curve shown in Figure 4.13 on page 69.

There are 6 features computed directly from the grayscale intensity of the

voxels in the difference image. Pi is the pixel intensity of the ith voxel of the lesion.

For all the following equations when not specified i = 1 . . . N .

1. Minimum Intensity

Imin = min
i

Pi , (4.17)

2. Maximum Intensity

Imax = max
i

Pi , (4.18)

3. Sum of Intensity

Isum =
N∑

i=1

Pi , (4.19)

4. Average Intensity

Iavg =
1

N

N∑
i=1

Pi , (4.20)
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5. Root Mean Square Intensity

IRMS =

√√√√ 1

N

N∑
i=1

P 2
i , (4.21)

6. Standard Deviation of Intensity

Istddev =

√∑N
i=1(Pi − Iavg)2

N − 1
. (4.22)

Figure 4.12: Time/intensity curve of a blood vessel.

Source: [90]
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Figure 4.13: This figure illustrates that some of the datasets we have used do not
have sufficient temporal resolution to capture a second wash-in phase. (Case: 5489,
slice: 26)
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4.4.4 Features Selection

The TOOLDIAG package [84] was used for selecting the top best features to be

used as inputs to different classifiers. A subset of 19 datasets was used to compute all

the shape, texture and BMRI features. These features were computed as minimum,

maximum, summation, average, standard deviation, and RMS, which yielded to 42

features used as an input to the TOOLDIAG package. The best features were found

using the estimated minimal error probability, 1 nearest neighbor, and leave-one out

methods.

The best features were: average relative intensity, RMS relative intensity, av-

erage spiculation, RMS spiculation, standard deviation of spiculation, average radius,

RMS radius, average perimeter length, RMS perimeter length, average compactness,

standard deviation of compactness, average area, and RMS area. The above best

13 features were used as inputs of the classifiers.

4.5 Specific Aim 3

Devise Classifiers to Distinguish Benign from Malignant Lesions

Breast lesions in MRI were classified as benign or malignant using three clas-

sifiers: the backpropagation neural network (BNN), the support vector machines

(SVM), and the Bayesian classifier (BC).

4.5.1 Classification of Breast Masses from Mammograms

In this section, we briefly describe related previous work comparing the per-

formance of expert radiologists, radiology residents, and a backpropagation neural
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network (BNN) for classifying breast masses on mammography. Our goal was to

reduce the false negative rate during routine reading of mammograms. 160 mammo-

grams from 3 different institutions were used. There was biopsy proof for at least

one mass in each mammogram. The masses were identified by an expert radiologist

and extracted using region growing with a seed. Ten texture and shape based fea-

tures (area, perimeter, compactness, radial length, spiculation, mean and standard

deviation of radial length, minimum/maximum axis, and boundary roughness) were

used as inputs to a three-layer BNN. Shape features were computed based on the

boundary of the mass; texture features were computed from the pixel values inside

the mass. 140 cases were used for training the BNN and the remaining 20 cases were

used for testing. The testing set was read by three expert radiologists, three radiology

residents, and the BNN. The performance of the human readers and the BNN was

evaluated by computing the area under the ROC curve (Az) [6, 8].

4.5.2 BNN Design

Artificial neural network design includes decision on the number of the net-

work layers, the number of the hidden layer neurons, the neurons type of transfer

functions, and the neural network learning method. The design is very dependent on

the application.

We used a three layer neural network with three neurons in the hidden layer

and one neuron in the output layer. The inputs to the network were the selected

best shape, texture, and contrast enhancement features as described in Specific Aim

2 (section 4.4 on page 60). Thus the input space had 13 dimensions, and the input
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layer consisted of 13 neurons. The backpropagation algorithm was used for train-

ing [28], and Levenberg-Marquardt (L-M) optimization method [51, 57, 89] was used

for accelerating the network learning. During training, output from the backpropaga-

tion neural network (BNN) was compared with the biopsy results (the targets). The

mean-square difference was used to estimate the error.

We used a linear transfer function for the input layer, and Hyperbolic Tangent

Sigmoid transfer function for the hidden and output layers neurons as shown in Fig-

ure 4.14 on the following page. The BNN system output is a floating number in the

range of [-1 +1], where -1 indicates a classification decision of a benign lesion, and

+1 indicates a classification decision of a malignant lesion.

4.5.2.1 Number of Neurons

For each input of the BNN system v1, v2, . . . , v13, a random weight w1, w2, . . . , w13

is assigned. The input of each neuron in the hidden layer would be:

x =
13∑
i=1

(viwi). (4.23)

It is important to use more than two neurons in the hidden layer, in order to

allow non-linear decision boundary as shown in Figure 4.15 on page 74. The number

of the input layer neurons is decided by the number of the features used as inputs, and

the number of the output layer neurons is dependant on the number of classes used

to classify the patterns. However, selecting the number of the hidden layer neurons

(Nh) is not as easy. This number controls the complexity of the decision boundary.
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When there are linear patterns, one or two neurons are sufficient to do the task,

but when there are non-linear patterns you must use more than two neurons in the

hidden layer. Nh also determines the number of network weights, so it is important

that the number of weights not exceed the number of the training samples. There

is no formula that calculates the optimal Nh, because every application is a special

case. We used trial and error method to choose Nh. Taking into account the previous

studies in chapter two, we started with a large Nh and reduced Nh until a good result

was reached to prevent unnecessary complexity as shown in Figure 5.13 on page 110

and Table 5.5 on page 109. We ended up with Nh = 3. Thus, the total number of

weights is 13 inputs × 3 neurons = 39 weights.

Figure 4.14: Non-linear transfer function: Hyperbolic Tangent Sigmoid used in the
hidden and output layers neurons.
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Figure 4.15: Using two neurons in the hidden layer allow a linear decision boundary
as shown in the top, whereas using three neurons allows more complicated decision
boundaries such as the bottom case.

Source: [28]
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4.5.2.2 Transfer Function

A transfer function is a function that maps the input of a neuron to its output.

A good transfer function should be:

• Continuous, and has a none-zero derivative over a wide range, this is important

when using backpropagation algorithm for training.

• Asymptotic, otherwise, it is possible during training that one or more of the

weights would be adjusted to minimize the network error, which might force

the derivative to reach zero (saturation stage).

• Easy and fast to compute.

After studying the above requirement we chose the hyperbolic tangent sigmoid

function (see Figure 4.14 on page 73) to be used in the hidden and output layers

neurons, which calculates its output according to the following equation:

f(x) = 2/(1 + exp−2x −1). (4.24)

4.5.2.3 Backpropagation Algorithm

The backpropagation learning algorithm is a supervised learning method that

can be used with multilayer networks and nonlinear differentiable transfer functions.

Backpropagation is a gradient descent algorithm, in which the network weights

are moved along the negative of the gradient of the performance function. The term
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backpropagation refers to the manner in which the gradient is computed for nonlinear

multilayer networks.

The power of backpropagation is that it allows us to calculate an effective

error for each hidden unit, and thus adjust the hidden weights. As in all supervised

learning methods, the backpropagation algorithm consists of presenting an input pat-

tern and changing the network parameters to bring the actual outputs closer to the

desired target values. These outputs are compared to the target values, any difference

corresponds to an error. This error is some scalar function of the weights, thus the

weights are adjusted to reduce the error. This error function is the sum of square

differences of the outputs and targets. Let vi be the training set elements, yi are the

outputs, and wi are the desired output or targets, then the error function is:

E =
∑

i

∑
j

(yi
j − wi

j)
2. (4.25)

The backpropagation weights adjustment is:

wij(k + 1) = wij(k)− η
∂E

∂wij

. (4.26)

where, k is the iteration number, and η is the learning rate. The weights are adjust-

mented continuously until a “good performance” is reached.

The steps of backpropagation algorithm are:

1. Initialize wij with random small numbers, and set k = 0.

2. Start with a randomly chosen pattern v from the training set, and evaluate y.
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3. If y 6≡ w, adjust the weights:

wij(k + 1) = wij(k)− ηδjzi(k), (4.27)

Where, zi(k) is node i output, and δj is the error of the jth node.

δj = yj(1− yj)(wj − yj). (4.28)

4. Repeat from the second step with another training pattern.

5. k = k + 1.

6. Repeat steps 2-4 until ‖∆E(w) < θ‖ for all training patterns.

4.5.2.4 Learning Acceleration

Levenberg-Marquardt (L-M) Optimization algorithm was used to accelerate

the network learning [51, 57, 89]. This method was designed to reach a second order

learning by estimating the Hessian matrix using the sum of outer products of the

gradients. The reason of using the Hessian matrix is to include additional information

about the local topography of the performance function of the network in order to

improve, accelerate, and stabilize finding the minimum error.

For example, when descending the walls of a very steep local minimum bowl

we must use a very small step size to avoid “rattling out” of the bowl [28]. On the

other hand when we are moving along a gently sloping part of the error surface we
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want to take large steps otherwise it will take forever to get anywhere. This problem

is compounded by the implementation problem where in steep regions (where we

have to be careful not to make our steps too large) we move quickly and in shallow

regions (where we need to move in big steps) we move slowly. Another issue is

that the curvature of the error surface may not be the same in all directions. For

example if there is a long and narrow valley in the error surface the component of the

gradient in the direction that points along base of the valley is very small while the

component perpendicular to the valley walls is quite large even though we have to

move a long distance along the base and a small distance perpendicular to the walls.

So we would like to use slightly more sophisticated gradient descent algorithms than

simple steepest descent.

Since that we used the sum of squares as a performance function, we were able

to approximate computing the Hessian matrix by:

H = JT J, (4.29)

Where J is the Jacobean matrix, which contains the first order derivatives of

the network error in terms of the weights and biases. Let Ni be the number of the

network inputs, Nh, Bh be the number of the hidden layer neurons and biases, and

No, Bo the number of the output layer neurons and biases, then the Hessian matrix

size would be:

Hsize = [((Ni + Bh)Nh) + ((Nh + Bo)No)]
2. (4.30)
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So, for Nh = 13:

Hsize = [((13 + 1)3) + ((3 + 1)1)]2 = (46)2 = 2116. (4.31)

So the Hessian matrix is the second derivative of the network output in terms

of 46 variables and with a size of 2116, which is not easy to compute. This is why

the Hessian matrix computation was approximated to equation 4.29.

The network error is calculated from the steepest gradient descent:

g = JT e, (4.32)

Where e is the network errors vector.

L-M algorithm uses this approximation when updating the weights:

wk+1 = wk − (JT J + µI)−1JT e, (4.33)

Where I is the identity matrix, µ is a constant. When µ = 0 the last equation

becomes:

wk+1 = wk −H−1g. (4.34)

And when µ is big, we get the steepest gradient descent with a small step.

With every iteration, µ gets a smaller value as the network performance function is

being minimized, so the network learns faster.
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Figure 4.16 shows the 1-D case of using L-M algorithm to accelerate the net-

work learning.

Figure 4.16: The effect of using L-M algorithm on accelerating network learning.
Using L-M methods allows faster movement to the minimum error point.
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4.5.2.5 Accelerating the Convergence of the Backpropagation Algorithm

The curvatures of the error surface might often contain hills, where the slope

of the error function is too small. If J(w) is the network error function, which is a

function of both weights and biases, but for simplification purpose, we will assume

that it is a function of merely the weights. Then the slope of the error function would

be:

Eslope = dJ(w)/d(w) (4.35)

The small slope areas are created when a large number of weights are exist,

where the error function becomes dependent on one of these weights and indepen-

dently from the others.

One way to accelerate the convergence of the backpropagation algorithm is

momentum method, where the equations 4.25, and 4.26 on page 76 are updated

to [28]:

∆wij = η
∂E

∂wij

, (4.36)

∆wij = η
∂E

∂wij

+ η∆wij. (4.37)

This gives us:
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wij(k + 1) = wij(k) + ηδjzi(k) + α∆bwij(k)− wij(k − 1)c. (4.38)

α is the momentum constant, and it is in the range of [0 1]. The role of

the momentum constant is to distribute the update in the previous iteration to the

current iteration, forcing the weight optimization to proceed through local minima.

4.5.2.6 Learning Rate

The learning rate is the only factor that determines how fast the network

will reach the global minimum error point, and not the final values of the weights.

The learning rate significantly affects the quality of the net. If some of the weights

convergenced faster than the rest, then the network performance might not be the

same for the whole input range. Or even might not be the same for all the classes.

Figure 4.17 on page 84 shows the effects of different learning rates on the convergence

of a 1-D function.

The optimal learning rate is the one that leads to the global minimum in one

step as shown in Figure 4.17, b. The second order error function (mean square root,

MSR) is giving by:

∂2E

∂w2
∆w =

∂E

∂w
, (4.39)

ηoptimal = (
∂2E

∂w2
)−1. (4.40)
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As shown in Figure 4.18 on page 85, the maximum value of the learning rate

that allows convergence is: ηmax = 2ηoptimal, as shown in Figure 4.17 (c). For the

BNN system, we used η ≈ 0.1 with a learning time of 100 epochs.

4.5.3 SVM Design

We also compared the performance of BNN with that of another classification

tool: the support vector machine (SVM). SVM learning has many real world appli-

cations including object recognition [80]. In SVM learning, instead of minimizing an

object function based on the training samples (e.g., mean square error), the SVM

attempts to minimize a bound of the generalization error, i.e., the error made when

testing on data not seen during training. Consequently, SVM tends to perform better

when applied to data outside the training set when compared to other types of clas-

sifiers. The SVM achieves good performance by focusing on the training examples

that are most difficult to classify, the so-called support vectors [29].

In SVM the input is mapped by a nonlinear function ϕ(.) to a high dimensional

space, and the optimal hyperplane (for the two classes case) is the one that has the

largest margin. The support vectors are those (transformed) patterns that determine

the margin; they are the hardest patterns to classify, and the most informative ones for

designing the classifier. Each input pattern vi, (i = 1, 2, . . . , n) has been transformed

to yi = ϕ(vi), we let the output zi = ±1, according to whether pattern i is in class 1

or class 2. Then a linear discriminant in the augmented y space is:

g(y) = wty, (4.41)
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Figure 4.17: The effects of different learning rates η on the convergence of a 1-D
function. a: η < ηoptimal the convergence is guaranteed, but the learning is slow. b:
η = ηoptimal one learning step is sufficient to reach the global minimum. c: ηoptimal <
η < 2ηoptimal oscillation, but converging slowly. d: η > 2ηoptimal diverge. Adapted
from [28].
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Figure 4.18: A second order error function, and its linear derivative. The optimal
learning rate guarantees the arrival to the optimal weight value, which gives the
minimum error in one step.

Source: [28]
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where both the weight vector and the transformed pattern vector are augmented,

thus a separating hyperplane ensures:

zig(yi) ≥ 1. (4.42)

The goal in training a SVM is to find the separating hyperplane with the

largest margin (the largest the margin, the better generalization of the classifier).

The distance from any hyperplane to a pattern y is |g(y)|/‖w‖, and assuming that a

positive margin b exists, the previous equation implies:

zig(yi)

‖w‖
≥ b. (4.43)

The goal here is to find the weight w that maximizes the margin b.

4.5.3.1 SVM Learning

Let y1, y2, . . . , yn be the training n samples with some labeled as class 1, and

some labeled as class 2. These samples were used to determined the weights w in a

linear discriminant function as described in equation 4.41 on page 83. The assumption

in this case would be that the samples are linearly separable. A sample yk is classified

correctly if wtyk > 0 and yk is labeled class 1, or if wtyk < 0 and yk is labeled class 2.

This suggest a replacement of all samples labled class 2 by their negatives to simplify

the treatment of the two-category case. With this simplification we can forget the

labels and look for a weight vector w such that wtyk > 0 for all the samples.
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Let yk be the kth sample, and yk is the kth misclassified sample, then the

steps of the training algorithm [68] are as follows:

1. begin initialize w with random numbers, k = 0, j = 0.

2. do j = (j mod n) + 1,

3. If wtyj < 0 (misclassified) then

(a) k = k + 1,

(b) yk = yj,

(c) w = w + yk.

4. until wtyj > 0 for all samples y1, y2, . . . , yn.

SVM learning was used as implemented by Mitchell et. al. [68]

4.5.4 BC Design

The Bayesian classifier was trained and tested using the leave-one-out method.

Its output is a floating point value for the classification, useing the probability of class

1 for benign lesions versus the probability of class 2 for malignant lesions.

The Bayesian classifier assumed a 13-dimentional Gaussian distribution as the

inputs. This Gaussian distribution was computed using two parameters: the mean

vector and covariance matrix of the distribution.
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Figure 4.19: Classifying the data using the leaving-one-out method. For each dataset
(n) in a collection C of N datasets, a new collection C ′ (of size N − 1) is created
without the nth dataset. A classifier is trained with C ′, and n is evaluated. Outputn

is then the classification of dataset n.

4.5.5 Data Classification

The three classifiers were trained using the leave-one-out method. For each

lesion, an experienced reader identified suspicious lesions and mark the lesion using

the CAD system. For each of the marked lesions, we extracted the lesion features.

The best 13 features, combined with the “ground truth” (pathology result), served

as inputs during each of the classifiers training. Figure 4.19 shows how the datasets

are classified using the leave-one-out method.

Summary Three artificial classifiers were used to distinguish the 80 BMRI lesions

into benign and malignant. The backpropagation neural network (BNN), the support
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vector machine (SVM), and the Bayesian classifier (BC). For each lesion, 42 shape,

texture, and enhancement kinetics features were computed. The best 13 features were

selected using the TOOLDIAG package, and used as inputs of the three classifiers.

Only the BNN classifications were used in the human reader experiments.

4.5.5.1 Pilot Study

Before the start of the human reader experiments, a pilot study was performed

using two readers who were not involved in the final experiments. We used a subset

of 37 lesions, and did not give any information about the system performance. We

gave the system output as a percentage with 0% as benign, and 100% as malignant.

The BNN significantly outperformed both readers (p < 0.001), but since they

had not been informed as to its performance they did not trust the system and did

not show significant improvement in their classification. Furthermore, the readers

had some difficulty understanding the percentage rating. After seeing these results,

we decided to modify the human reader experiments as follows:

1. Show the ROC curve of the BNN system to the readers to familiarizing them

with the system performance;

2. Before presenting the results to the readers, we transformed the output of the

BNN system from a percentage to a binary (benign/malignant) decision.

4.5.6 Classification by Human Readers

Five readers (one breast MR expert, two mammographers, and two body imag-

ing fellows) were used to evaluate system performance. All readers were familiar with
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Figure 4.20: Every human reader classifies each dataset; for a dataset (n), they first
evaluate it without CAD assistance (HR−

n ). Then they are shown the results of the
CAD system (Outputn), and allowed to re-evaluate their decision (HR+

n ).

lesion descriptors including margin, shape, contrast enhancement pattern and kinet-

ics, as previously described in [72]. Lesion classification criteria followed the model of

Nunes et al. [75]. Figure 4.20 shows how each human reader evaluated the datasets.

4.6 Specific Aim 4

Validation

A validation protocol was used to determine the average boundary error in the

skin and chest wall segmentation, and sensitivity and specificity of the three classifiers

and the five readers with and without the CAD system. ROC curve analysis [12] and

multi-reader multi-case (MRMC) analysis [26] were used to evalute the human readers

performance.



www.manaraa.com

91

4.6.1 Chest Wall Detection

To validate the chest wall detection, the chest wall was manually identified

for each of the 19 randomly selected datasets (a subset of the 75 datasets). For

each point on the automatic segmentation, the distance to the nearest point on the

manual segmentation was determined. Then for each dataset the average distance,

the maximum distance and the RMS distance were computed. Each of these is then

reported as the average plus and minus the standard deviation across all the datasets.

4.6.2 Lesion Classification: CAD Performance

The performance of the CAD classification was assessed on 80 BMRI lesions.

For each data set, the lesion was be pre-identified by an expert reader. Lesion biopsy

results served as the standard of reference. The three classifiers were trained using

leave-one-out method [10,27]. Sensitivity, specificity, and ROC analysis were used to

evaluate performance. Figure 4.21 on the following page shows how the CAD system

is validated.

4.6.3 Reader Performance with and without CAD Assistance

The 80 BMRI lesions were randomly shown to five readers in one session. These

five readers (one breast MR expert, two mammographers, and two body imaging

fellows) were used to evaluate system performance. Each reader was asked to read

each image first without using the CAD system, then with the CAD system for

guidance. The CAD system provided the locations of suspicious lesions, a summary

of the features and the classification for each lesion as either benign or malignant. The
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Figure 4.21: Validation of CAD system. For each dataset (n), the classification of
the CAD system (Outputn), is compared with the biopsy result (Biopsyn). This is
used to compute the sensitivity (True Positive Rate), and specificity (1-False Positive
Rate) of the CAD system.

reader made the final determination concerning the classification of the breast lesion

on a scale of [1 to 5], with 1 being “negative or no finding”, 2 meaning “definitely

benign”, 3 is “probably benign”, 4 being “suspicious”, and 5 meaning “definitely

malignant”. The reader may choose to use all, some or none of the information

provided by the CAD system. Reader performance was evaluated using the biopsy

result as the standard of reference. Performance was evaluated using ROC curve

analysis [12] and multi-reader multi-case (MRMC) method [26,40,41].

4.6.4 MRMC Method

In 1992, Dorfman et. al. proposed a method allowing generalization of ROC

curves to the population of readers and cases [26]. Traditional ROC curve analysis

focuses on the specific performance of the readers and cases in the study, but the real
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goal is to understand the performance on any case, and for the population of readers.

The multi-reader multi-case (MRMC) method generalizes the results by applying the

jackknife method to the ROC curve statistics [82, 83,92].

The jackknife method is a general method for reducing statistical bias and

performing statistical tests. It involves creating pseudovalues which can be treated as

independent and identically distributed. Psuedovalues are generated for a particular

statistic under study (e.g. mean, Az). First, the statistic is computed using all cases

for a particular reader (Sglobal). Then, the statistic is re-computed once for each case

(Si, for i = 1, 2, . . . , Q). The Si statistic is computed by ignoring the ith case. Finally,

the pseudovalue is generated as Pi = QSglobal − (Q− 1)Si.

In MRMC, the statistic of interest is the ROC area under the curve Az. For

each reader, Az is computed Q times (Az(i) for i = 1, 2, . . . , Q). Az is computed by

fitting the standard binormal model to the ROC rating data. For the ith case, Az(i)

is the area under the curve for that reader, as though they did not score the ith case.

The Q pseudovalues (Pi) are Pi = QAz − (Q− 1)Az(i).

For our study, there were only five readers. An absolute minimum of ten

readers is necessary to allow for generalization to the population, with 20 being a

reasonable number [26]. Therefore, in the MRMC analysis, the readers were consid-

ered a fixed factor. The MRMC analysis was performed twice; the first time only

the first lesion in each case was considered (Q = 75), the second time all lesions were

considered (Q = 80).
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CHAPTER 5
RESULTS

In this chapter, we show the results of the four specific aims from the previous

chapter in detail. First, we present the BMRI segmentation results. Second, we show

the classification results for both mammography and BMRI. Then finally we show

the classification results of each classifier, and the ROC curves for the human reader

experiments.

5.1 Segmentation of BMRI

In this section, we present the chest wall segmentation results, then the seg-

mentation of enhanced lesions using the various methods discussed in the previous

chapter.

5.1.1 Skin and Chest Wall Segmentation

Figure 5.1 on the next page shows what the data from a breast MRI looks

like before processing. We show the pre-contrast and three post-contrast images.

The lesion is more obvious in the post-contrast images, but is barely visible in the

pre-contrast images.

Figure 5.2 on page 97 shows the result from a good agreement between the

manual segmentation and the automatic segmentation. It is difficult to determine

which one is “better”, because the smoothing that occurs manually may not be de-

sireable, depending on the application. Figure 5.3 on page 98 shows one case where

the matching does not agree. In this instance the chest wall boundary was very weak

in the upper portion of the slice, and the manual segmentation chose a different path
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Figure 5.1: The pre-contrast and three post-contrast images. The lesion is marked
with a purple box, it is more obvious in the post-contrast images, but is barely visible
in the pre-contrast images. (Case: 5828, slice: 20).
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than the automatic one. Figure 5.4 on page 99 shows a case where the automatic

segmentation does poorly. Not enough of the breast tissue was removed, and the

texture in the breast created a nice edge for dynamic programming to follow.

Table 5.1 on page 100 shows the average, maximum, and RMS difference

between the automatic segmentation and the manual segmentation for the 19 datasets.

The results show large variation in the average error (2.4-23.1 mm), because there are

some datasets which have a very strong chest boundary, while in others it is almost

impossible to distinguish. Also, because the manual segmentation wasn’t done by

an expert radiologist, it may not be a perfect gold standard. These data are also

summarized in Figure 5.5 on page 101.

5.1.2 Segmentation of Enhanced Regions

Figure 5.6 on page 101 shows the difference images obtained by subtracting the

pre-contrast sequence from the post-contrast sequences. We can see that the lesion

enhanced more than the rest of the tissues. Figure 5.7 on page 102 shows the results

after segmentation and connected components labeling.

In Figure 5.8 on page 102, the histogram follows a single modal distribution,

so it is difficult to find the correct location to threshold. This was true in both the

single slice case, as well as looking at the histogram for the entire dataset.

5.1.3 Segmentation Using Morphological Operations

Figure 5.9 on page 103 shows the gradient for a case with a mass, and Figure

5.10 on page 104 shows the morphology for the same case, where the mass was not
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(a) (b)

(c) (d)

Figure 5.2: This figure shows a good match between the manual segmentation and
the automatic segmentation. (Case: 5520, slice: 12) a) The blurred image. b) The
cost image. c) The manual segmentation is the pink line; the automatic segmentation
is the cyan line. d) The automatic segmentation showing the seven regions mask.
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(a) (b)

(c) (d)

Figure 5.3: This figure shows what happens when there isn’t an obvious boundary.
In the upper right portion of the original image, the boundary is very dim. It isn’t
obvious if it continues on diagonally, or if it switches to a vertical line. Also, if it was
a diagonal line, this breaks one of the assumptions that the chest wall boundary is
generally vertical. (Case: 5549, slice 20) a) The blurred image. b) The cost image.
c) The manual segmentation is the pink line, while the automatic segmentation is the
cyan one. d) The automatic segmentation.
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(a) (b)

(c) (d)

Figure 5.4: This figure shows the other common failure in the automatic algorithm
for finding the chest wall. When the breast is not entirely within the field of view,
the breast mask fails to cover all the breast tissue. Because breast tissue is generally
heavily textured, it can appear as a stronger edge in the cost image (edge image) than
the chest wall boundary. (Case: 5520, slice 9). a) The blurred image. b) The cost
image. c) The manual segmentation is the pink line; the automatic segmentation is
the cyan line. d) The automatic segmentation using DP.
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Table 5.1: The unsigned difference between the manual and the automatic segmen-
tation of the chest wall in mm.

Sequence Average St Dev Max RMS
1610 14.1 10.7 24.8 15.6
1806 12.0 5.0 21.9 12.8
5301 6.4 3.7 17.8 7.0
5419 10.7 5.4 16.0 11.9
5438 9.1 3.0 14.5 9.2
5489 2.7 3.3 10.4 4.3
5520 19.5 5.7 35.1 20.6
5525 9.0 6.9 25.8 9.8
5549 3.6 2.5 11.1 4.4
5552 17.5 6.2 22.7 18.4
5596 7.6 3.2 16.7 8.9
5616 23.1 7.7 30.8 26.0
6705 3.0 2.1 12.1 5.0
6819 16.3 10.5 29.4 18.2
6851 16.8 8.9 33.3 18.6
6869 3.5 1.5 13.8 5.3
6872 3.9 3.1 12.2 5.7
6873 2.4 2.0 14.6 5.5
6885 7.7 3.3 16.3 9.1
Total Avg 9.9 5.0 19.9 11.4
Total StDev 6.4 2.8 7.9 6.4

1ex
Note: Average is the average unsigned difference for each point between the two
segmentations. St Dev is the standard deviation of the unsigned difference. Max
is the maximum unsigned difference, and RMS is the Root Mean Square unsigned
difference.
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Figure 5.5: This graph shows the average boundary segmentation error for each
datasets listed in table 5.1 on the preceding page. The blue bars are the average and
standard deviation over all of the datasets.

Figure 5.6: The difference images between the pre-contrast and each of the three
post-contrast images (Case: 5828, slice: 20).
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Figure 5.7: The labeled regions using 3D connected component algorithm (Case:
5828, slice: 20).

(a) (b) (c)

Figure 5.8: The histogram for the individual slice follows a very similar distribution
to that of all the slices. Both of them follow a single modal distribution, which makes
it difficult to find an optimal threshold. a) The difference image. b) The histogram
of that slice. c) The histogram of all the difference images. (Case: 5520, slice: 15).
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effected by applying morphology.

Figure 5.9: The gradient image of a case with a mass. (Case: 5489, slice: 9).
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Figure 5.10: The morphology image of a case with a mass: The mass is still present,
but the blood vessels have been removed. (Case: 5489, slice: 9).
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5.2 Features Selection

Using the TOOLDIAG package to select the best features, we found the fol-

lowing 13 features: average relative intensity; RMS relative intensity; average spic-

ulation; RMS spiculation; standard deviation of spiculation; average radius; RMS

radius; average perimeter length; RMS perimeter length; average compactness; stan-

dard deviation of compactness; average area; and RMS area.

Figure 5.11 on the following page shows the time intensity curve for a mass,

illustrating two sections: uptake and wash out. Table 5.2 shows the minimum, max-

imum, average, and RMS of five different features of the benign lesions, and Ta-

ble 5.3 on the following page shows the minimum, maximum, average, and RMS of

five different features of the malignant lesions

Table 5.2: The minimum, maximum, average, and RMS of five different features of
the benign lesions.

Feature Radius Spiculation Relative Intensity Perimeter Length Area
Minimum 1.88 3.36 0.00 1076.47 11.65
Maximum 18.65 5.77 176.64 6713.72 172.89
Average 9.81 4.97 94.33 4564.61 95.13
RMS 10.30 5.61 102.98 4599.01 95.65

The unit of radius, spiculation, perimeter length, and area is mm. Relative
intensity is unitless.
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Figure 5.11: The time intensity curve of a mass consists of a uptake section and a
wash out section. (Case: 5489, slice: 9).

Table 5.3: The minimum, maximum, average, and RMS of five different features of
the malignant lesions.

Feature Radius Spiculation Relative Intensity Perimeter Length Area
Minimum 3.34 3.40 3.42 2471.67 15.65
Maximum 23.17 7.72 276.64 8949.36 258.43
Average 12.27 6.11 195.10 6876.12 140.34
RMS 13.53 6.38 196.25 6984.18 143.96

The unit of radius, spiculation, perimeter length, and area is mm. Relative
intensity is unitless.
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5.3 Classification

In this section we give the results of the BMRI datasets classification. First, we

show the results from our previous related work on classifying mammographic masses

using neural networks. Second, we present the results of classifying the BMRI datasets

using three classifiers: Bayesian classifier (BC), support vector machine (SVM), and

backpropagation neural network (BNN). Finally, we show the results of the human

reader experiments.

5.3.1 Classifying Mammographic Masses

Figure 5.12 on the next page shows the ROC curve of using the BNN system

for classifying the mammographic masses, the radiologists average performance, and

the residents average performance. Table 5.4 shows the area under each of the ROC

curves (Az), the standard error, p value, and the 95% confidence interval of the area.

Az was 0.923 for the BNN, 0.846 for the expert radiologists, and 0.648 for the

residents. The BNN classifier output for malignant and benign masses was signifi-

cantly different in the testing stage (p<0.001) [5]. These results illustrate the promise

of BNN-based CAD systems for classifying breast masses in mammography.

Table 5.4: The area under each of the ROC curves (Az), the standard error (SE), p
value, and the 95% confidence interval of the area.

Method Az SE p 95% CI
BNN 0.923 0.0760 < 0.0001 0.774 to 1.000
Radiologists Average 0.846 0.1317 0.0043 0.588 to 1.000
Residents Average 0.648 0.1321 0.1308 0.389 to 0.907
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Figure 5.12: The ROC curve for classifying the mammographic masses.
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5.3.2 Classifying BMRI Lesions

In this section we show the results of using trial and error method to choose Nh,

and the results of classifying the BMRI datasets using three classifiers: the Bayesian

classifier (BC), the support vector machine (SVM), and the backpropagation neural

network (BMM).

Figure 5.13 on the next page shows the ROC curves of the BNN system when

four, ten and twenty neurons were used in the hidden layer. Table 5.5 shows the

area under the ROC curve (Az), the standard error, p value, and the 95% confidence

interval of the area for each curve of Figure 5.13 on the next page. Although there

was no significant difference in the BNN system output when three hidden neurons vs.

four neurons were used, we choose to use the three neurons becuase Az was slightly

higher.

Table 5.5: The area under the ROC curve (Az), the standard error (SE), p value, and
the 95% confidence interval of the area for the BNN system with different Nh.

BNN Az SE p 95% CI
Nh = 3 0.970 0.0237 < 0.0001 0.924 to 1.000
Nh = 4 0.964 0.0243 < 0.0001 0.917 to 1.000
Nh = 10 0.905 0.0362 < 0.0001 0.834 to 0.976
Nh = 20 0.717 0.0590 0.0001 0.602 to 0.833

Figure 5.14 on page 111 shows the ROC curves of each classifier. Table 5.6 on

the next page shows the area under the ROC curve (Az), the standard error, p value,

and the 95% confidence interval of the area.
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Figure 5.13: The ROC curves of of the BNN system when four, ten and twenty
neurons were used in the hidden layer

Table 5.6: The area under the ROC curve (Az), the standard error (SE), p value, and
the 95% confidence interval of the area for each classifier.

Method Az SE p 95% CI
BC 0.706 0.0586 0.0002 0.591 to 0.821
SVM 0.856 0.0485 < 0.0001 0.761 to 0.951
BNN 0.970 0.0237 < 0.0001 0.924 to 1.000
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Figure 5.14: The ROC curves of the Bayesian Classifier (BC), the support vector
machine (SVM), and the backpropagation neural network (BNN) for classifying the
BMRI lesions.
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5.3.3 Human Reader Experiments

In this section we present the results of the human reader experiments. For

each human reader, we show the results of the reader with and without the CAD

system assistance, the ROC curves of each reader, and the MRMC results.

5.3.3.1 BMRI Expert

Figure 5.15 on the following page shows the ROC curve of the breast MRI

expert for classifying the BMRI lesions. Table 5.7 shows the area under the ROC

curve Az, the standard error, p value, and 95% of the confidence interval of the area.

Table 5.7: The area under the ROC curve Az, the standard error (SE), p value, and
95% of the confidence interval of the area for the BMRI expert.

Method Az SE p 95% CI
BMRI expert w/o 0.817 0.0498 < 0.0001 0.720 to 0.915
BMRI expert w/ 0.933 0.0335 < 0.0001 0.868 to 0.999

5.3.3.2 Mammographers

Figure 5.16 on page 114 shows the ROC curves of the two mammographers

for classifying the BMRI lesions. Table 5.8 on the next page shows the area under

the ROC curve (Az), the standard error, p value, and the 95% confidence interval of

the area.
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Figure 5.15: The ROC curve of the breast MRI expert for classifying the BMRI
lesions.

Table 5.8: The area under the ROC curve (Az), the standard error (SE), p value, and
the 95% confidence interval of the area for the two mammographers.

Method Az SE p 95% CI
Mam. 1 w/o 0.774 0.0559 < 0.0001 0.665 to 0.884
Mam. 1 w/ 0.896 0.0422 < 0.0001 0.813 to 0.978
Mam. 2 w/o 0.788 0.0534 < 0.0001 0.684 to 0.893
Mam. 2 w/ 0.906 0.0386 < 0.0001 0.830 to 0.982



www.manaraa.com

114

Figure 5.16: The ROC curves of the two mammographers for classifying the BMRI
lesions.
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5.3.3.3 Body Imaging Fellows

Figure 5.17 shows the ROC curves of the two body imaging fellows for classi-

fying the BMRI lesions. Table 5.9 on the next page shows the area under the ROC

curve (Az), the standard error, p value, and the 95% confidence interval of the area.

Figure 5.17: The ROC curves of the two body imaging fellows for classifying the
BMRI lesions.
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Table 5.9: The area under the ROC curve (Az), the standard error (SE), p value, and
the 95% confidence interval of the area for the two body imaging fellows.

Method Az SE p 95% CI
Fel. 1 w/o 0.701 0.0599 0.0004 0.584 to 0.819
Fel. 1 w/ 0.900 0.0402 < 0.0001 0.821 to 0.979
Fel. 2 w/o 0.681 0.0611 0.0015 0.561 to 0.800
Fel. 2 w/ 0.781 0.0551 < 0.0001 0.673 to 0.889

5.3.4 MRMC Results for Human Readers

When only the first abnormality was included for each case, the average

area under the ROC curve for interpretation without CAD system assistance was

Az = 0.816, and with CAD system assistance was Az = 0.907. The difference was

statistically significant (F (1, 74) = 6.805, p = 0.0110 < 0.05).

When all abnormalities were included Az = 0.812 for interpretation without

CAD assistance, and Az = 0.912 for interpretation with CAD assistance. The differ-

ence was also statistically significant (F (1, 79) = 8.94, p = 0.0037 < 0.01).
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CHAPTER 6
DISCUSSION

This chapter has three sections; in the first two sections we discuss our results.

The first section is the BMRI segmentation discussion, and the second is the classi-

fication of the BMRI lesions. The classification discussion includes the ROC curve

and the MRMC analyses. In the third section, we summarize this study.

6.1 BMRI Segmentation

In this section we discuss the BMRI segmentation results. This includes the

skin and chest wall segmentation, and the enhanced lesions segmentation.

6.1.1 Skin and Chest Wall Segmentation

There are two factors that confound the search for the chest wall. First, the

chest wall is not always very visible in an image. This can be seen in Figure 5.3 on

page 98. Second, if the breast tissue contains a lot of texture, the textural features

may appear as edges to the dynamic programming step, and thus can be mistaken

for the chest wall as seen in Figure 5.4 on page 99. Both of these features are caused

by the way the images were acquired. Because these are fat suppressed images, the

ducts appear enhanced, and this causes the parenchymal texture. If another pulse

sequence, such as a T1 weighting, were used, breast fat would appear bright and the

parenchyma and most ducts would appear dark and it would be easier to find the

chest wall. However, this sequence wouldn’t be as effective for finding disease, but it

might be a suitable sequence to acquire to aid the post processing steps.
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6.1.2 Enhanced Lesions Segmentation

When attempting automatic segmentation, there were two primary factors

that we were unable to compensate for. First, MRI is inherently an imaging modality

with inconsistent signal intensity. MRI signal intensity values are qualitative instead

of quantitative. So, even if you scan the same patient twice on the same day, you

will get different MR image intensity values. In our study, the range of pixel values

could be 300 units in one case, and 1000 units in another. Figure 6.1 on page 120

shows a dataset with enhanced lesion that has intensity of approximately 300 units.

Figure 6.2 on page 121 shows another dataset with an enhanced lesion that has

intensity of approximately 1000 units.

The second significant factor is the overabundance of enhancing regions, many

of which are not significant. Blood vessels enhance very strongly (as shown in Fig-

ure 6.3 on page 122), but are in no way indicative of malignancy. In most scans, the

heart is visible. Since it is also a highly perfused region, it also enhances strongly (as

shown in Figure 6.4 on page 123).

Because of the challenges of implementing fully automatic segmentation, we

slected an alternative strategy. Instead of having the computer sort through all

enhancing regions, trying to determine which ones are significant, we allow the user

to select seed points for the computer to focus on.

Segmentation by Histogram In all the datasets, the voxel histogram was uni-

model as shown in Figure 5.8 on page 102. The histograms of individual slices, as

well as the histogram for the entire dataset, did not reveal an obvious threshold value
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to separate the breast lesion from the background.

Segmentation by Morphology This segmentation method can be improved by

applying a low pass filter to blur the gradient image. This is because a blood vessel

might be constant on the inside, but have a sharp edge where it meets other tissue.

By blurring the gradient, you can spread out the effects of a large gradient, and

overcome small areas of homogeneity.

6.2 BMRI Classification

In this section we discuss features computation, and BMRI lesion classification

for the three artificial classifiers, and for the human reader experiments.

6.2.1 Features Computation

Because scans are not isotropic and our features were calculated in the image

plane with the highest resolution, changing the perspective (CC vs. MLO) can effect

the measurement of lesions. However, most lesions are fairly isomorphic (radically

symmetric) and thus would appear similar in both views.

6.2.2 Artificial Classifiers

The classification used 75 pathology-proven datasets. Thirteen shape, tex-

ture, and enhancement kinetics based features computed for 80 lesions pre-identified

by the pathology locations. Lesion classification is applied to distinguish between

benign and malignant lesions. The features for each lesion were used as inputs to the

backpropagation neural network (BNN), the support vector machine (SVM), and the
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Figure 6.1: MRI signal intensity values are qualitative. This Figure shows a dataset
that has an enhanced lesion (red arrow) with intensity of 306. (Case: 1809, Slice:
15).
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Figure 6.2: MRI signal intensity values are qualitative. This Figure shows a dataset
that has an enhanced lesion (red arrow) with intensity of 1179. (Case: 7869, Slice:
8).
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Figure 6.3: This figure shows that blood vessels (red arrow) enhance very strongly,
but it is not a malignancy indication. (Case: 1806, Slice: 3).
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Figure 6.4: This figure shows a dataset where the heart (red arrow) is visible. (Case:
1610, Slice: 17).
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Bayesian classifier (BC), using the biopsy results as the gold standard. All classifiers

were trained using leave-one-out method.

Classification results from only the BNN system were used in the human reader

experiments. For this aspect of the work, we used a three layer neural network with

three neurons in the hidden layer and one neuron in the output layer. The back-

propagation algorithm was used for training. During training, the backpropagation

neural network (BNN) output was compared against the biopsy results (the targets).

The mean-square difference with a minimum performance of 0.1 was used as the er-

ror measure. The Levenberg-Marquardt (L-M) optimization method was used during

training.

6.2.2.1 Classifier Differences

Table 6.1 shows the differences in the BNN system performance for different

number of hided neurons. There was no significant difference in the BNN system

output when three hidden neurons vs. four neurons were used, we choose to use the

three neurons because Az was slightly higher.

Table 6.1: The differences in the BNN system performance for different number of
hided neurons in terms of (Az) along with the p value associated with each difference.

Contrast Difference p
Nh = 3 vs. Nh = 4 0.006 –
Nh = 4 vs. Nh = 20 0.247 < 0.0001
Nh = 10 vs. Nh = 20 0.188 < 0.0001
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Figure 5.14 on page 111 shows the ROC curves of each classifier. Table 5.6 on

page 110 shows the area under the ROC curve (Az), the standard error, p value,

and the %95 confidence interval of the area. The p value represents the probability

that observed difference between two groups are due to random variation from a

single distribution. Thus, in the testing stage of the BNN and the SVM systems (see

Table 5.6 on page 110), the p value shows a statistically significant difference between

theirs output for malignant vs. benign lesions (p < 0.0001). This is also true for the

BC system, but with (p = 0.0002).

Table 6.2 shows the differences among the three classifiers in terms of (Az)

along with the p value associated with each difference.

Table 6.2: The differences among the three classifiers in terms of (Az) along with the
p value associated with each difference.

Contrast Difference p
BNN vs. SVM 0.114 0.0287
BNN vs. BC 0.264 < 0.0001
SVM vs. BC 0.149 0.0470

The p values in Table 6.2 indicate significant differences among the three classi-

fiers (p < 0.05), with the largest difference between the BNN system and the Bayesian

classier (Az(BNN) - Az(BC) = 0.264), and the smallest difference between the BNN

system and the SVM (Az(BNN) - Az(SVM) = 0.114).

In theory, both support vector machines and Bayesian classifiers have the

ability to perform as well as a neural network. The differences primarily occur in
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what assumptions are made, and how you train the system.

An SVM only operates as a linear separator. You are able to overcome this

deficiency by generating pseudo-features from your input data (e.g. using x1 × x2 as

a feature, instead of only x1 and x2). An SVM can also bypass the explicit compu-

tation of the pseudo-features by using the kernel trick. However, this kernel is still

performing a specific transformation of the input data (e.g. a Gaussian kernel is per-

forming a Gaussian transformation on the data). Proper selection of pseudo-features

(or kernel) is very important to the performance of an SVM. This is a vary laborious

process, as it is unknown in advance what the proper transformation is. Adding many

(pseudo-)features is not the solution either, because then you run into the problems

of sampling density and feature space size. SVMs are designed to be fast at training,

and once they are trained, they generalize over the populations very well (i.e. they

train fast, and they are difficult to over-train).

A Bayesian classifier also, in theory, can perform identically to any other sys-

tem. It is modeled on the probabilities that a particular value of a feature belongs to

a specific class. This is very general, and with appropriate probabilities, it allows very

accurate classification. The difficulty is in defining the probabilities. With Q features,

this is a Q-dimensional surface defining the probability a sample from particular class

will have the specific values of all the features (there is one surface per class, in our

case two). This provides great flexibility, as you can define whatever surface you

want, but in practice it may be flexible. In our case, we made the simplification that

the probability surface could be modeled as a Q-dimensional Gaussian. Most likely,
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this is not an accurate model for our data, but it would be a time consuming process

and require more data to try many models.

A primary advantage of using a neural network is that it does not require the

user to do as much work on selecting features, or selecting an appropriate model for

their data. The training stage of the network is designed to automatically determine

what features are significant, how they are correlated, etc. Basically, it does not

require as much a priori knowledge to get a working system. The trade-off is that

more time must be spent in the training stage, it is very possible to over-train your

network, and if your training data is not representative of the population you are

likely to get poor performance.

The first limitation of a neural network is not that severe. Our SVM could be

trained in less than a second, while the neural network might take 30 seconds or more.

While this is a difference of approximately two orders of magnitude, the actual length

of time is not that severe. The second limitation is handled by controlling the number

of hidden nodes in the network. With a limited number of nodes, the network is forced

to generalize. This means that performance may seem to go down with the training

set, but on the full population, the performance may actually increase. The third

limitation is a general issue of systems which do not use a priori knowledge, since all

knowledge must be present in the training data. Proper selection of training data, by

increasing number of samples and making sure the samples are properly randomized,

should easily overcome this limitation. At first glance, the order of training samples

appears to matter, since that the network state (weights) are updated. However,
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since the training is continued for many cycles (100 epochs), it is unlikely to have

significant effect.

Since there are not many publications on automatic classification for BMRI le-

sions, we will compare our results to that of automatic classification of mammographic

masses. In terms of Az value, the BNN system classification results (Az = 0.970) is

better than the results reported by other groups like Kupinski et al. (Az = 0.95) [50]

and Huo et al. (Az = 0.94) [45]. Table 2.1 on page 15 shows a comparison among

different studies used artificial neural networks to classify mammographic masses.

The BNN performed the best among the three classifiers. This is due in

part to our previous experience in designing neural network [4–6]. Using features

based on shape, texture, and enhancement kinetics of the BMRI lesion improved the

performance of the BNN classifier compared with the performance when the shape

features were used alone (Az = 0.913) [8].

When we chose an operating point where the number of false negatives (FN)

is zero, we were able to maintain specificity of 100%, but the sensitivity was dropped

to 93% for the BNN system. Whereas, in both SVM and BC systems we were not

able to reach FN=0.

6.2.2.2 Human Reader Experiments

In the human reader experiments, we discuss the results for both the ROC

curve analysis, and the multi-reader multi-case (MRMC) analysis.
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ROC Curve Analysis Figure 6.5 shows the ROC curves of the BNN system, BMRI

expert without using the BNN assistance, and the BMRI expert with the BNN system

assistance for classifying the 80 BMRI lesions. Table 6.3 on the next page shows the

differences between the BMRI expert with and without the BNN assistance vs. the

BNN system classification.

Figure 6.5: This figure shows the ROC curves of the BNN system, BMRI expert
without using the BNN assistance, and the BMRI expert with using the BNN system
assistance for classifying the 80 BMRI lesions.
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Table 6.3: The difference between area under ROC curve (Az) between the BMRI
expert with and without the BNN assistance vs. the BNN system classification.

Contrast Difference p
BNN vs. expert w/o 0.153 0.0026
BNN vs. expert w/ 0.037 0.3298

expert w/o vs. expert w/ -0.115 0.0084

The p value in Table 6.3 indicate a significant difference between the BNN

system and the expert without assistance in classifying BMRI lesions (p < 0.05), and

a significant difference for the expert without assistance vs. the expert with assistance

(p < 0.05). But there was no significant difference between the BNN and the expert

with assistance (p ≈ 0.33).

Figure 6.6 on the next page shows the ROC curves of the BNN system, the

average mammographer performance without using the BNN assistance, and the av-

erage mammographer performance with the BNN system assistance for classifying

the 80 BMRI lesions. Table 6.4 shows the differences between the average Az for

the two mammographers with and without the BNN assistance vs. the BNN system

classification.

Table 6.4: The difference between area under ROC curve (Az) between the average
mammographer with and without the BNN assistance vs. the BNN system classifi-
cation.

Contrast Difference p
BNN vs. mammographers w/o 0.182 0.0013
BNN vs. mammographers w/ 0.064 0.1251

mammographers w/o vs. mammographers w/ -0.117 0.0015
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Figure 6.6: This figure shows the ROC curves of the BNN system, the average mam-
mographer performance without using the BNN assistance, and the average mammo-
grapher performance with the BNN system assistance for classifying the 80 BMRI
lesions.
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The p values in Table 6.4 on page 130 indicates a significant difference between

the BNN system and the mammographers without the assistance (p < 0.05), and a

significant difference for the mammographers without assistance vs. the mammogra-

phers with assistance (p < 0.05). But there was no significant difference between the

BNN and the mammographers with the assistance (p ≈ 0.13).

Figure 6.7 on the following page shows the ROC curves of the BNN system,

the average body imaging fellow performance without using the BNN assistance, and

the average body imaging fellow performance with the BNN system assistance for

classifying the 80 BMRI lesions. Table 6.5 shows the differences between the average

Az for the two fellows with and without the BNN assistance vs. the BNN system

classification.

Table 6.5: The difference between area under ROC curve (Az) between the aver-
age for the two fellows with and without the BNN assistance vs. the BNN system
classification.

Contrast Difference p
BNN vs. fellows w/o 0.262 < 0.0001
BNN vs. fellows w/ 0.101 0.0363

fellows w/o vs. fellows w/ -0.162 < 0.0001

The p values in Table 6.5 show a significant difference between the BNN sys-

tem and the fellows without assistance (p < 0.05), a significant difference for the

fellows without assistance vs. the fellows with assistance (p < 0.05), and a significant

difference for the BNN and the fellows with the assistance (p < 0.05).
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Figure 6.7: This figure shows the ROC curves of the BNN system, the average body
imaging fellow performance without using the BNN assistance, and the average fellow
performance with the BNN system assistance for classifying the 80 BMRI lesions.
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This study showed a significant improvement in all readers when using the

CAD assistance compared to no CAD assistance. For both the expert with CAD

assistance and the mammographers with CAD assistance, there was no difference

between the reader with CAD assistance and the BNN system at p = 0.05 level.

Even with CAD assistance, the body imaging fellows had significantly lower Az than

the other human reader groups and the BNN system.

In 1998, Giger et al. [31] performed a preliminary observer study conducted

at the RSNA. They demonstrated that the average performance in terms of Az value

of 128 radiologists (who participated in the study) on 110 mammograms increased

from an Az = 0.89 to an Az = 0.94 with computer assistance. We showed better

improvement results for the three different categories of the human readers comparing

with the study performed by Giger et al., but the population of readers we used is

not sufficient to generalize the outcomes of this study to the population of readers.

6.2.3 MRMC Analysis

In both types of MRMC analysis, there was a statistically significant improve-

ment when readers were assisted by the CAD system. The second analysis showed

a more significant improvement, but the first analysis is more defensible since the

population of cases (patients) is well defined, but the populations of lesions is not.

Since both are significant, we prefer to focus the discussion and conclusions on the

more defensible position.

The MRMC results agree well with the individual ROC results, which is ex-

pected since each group significantly improved with CAD assistance, the readers as
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a whole should also significantly improve.

6.3 Limitation of the Research

The limitations of this research can be grouped into two categories: Segmen-

tation limitations and classification limitations.

The limitations on segmentation stem from using an expert to identify the

lesions (semi-automatic segmentation) before computing the features. This makes

the subsequent feature computation dependent on the expert and could be different

with different experts. The difference is not expected to be large, but experts generally

differ slightly on what they consider the extent of a lesion.

Another limitation is that all features were derived solely from the MR images.

It is possible to use information such as personal and family medical history, age, pres-

ence of BRCA1/2 genes, etc. Radiologists frequently use these non-imaging features,

and they could hep improve the classification ability of the artificial classifiers.

The scope of the classification portion was also somewhat limited. We used

75 cases, but all acquired with the same scanner and under the same protocol. This

prevents us from being definitive that these methods will work on all BMRI cases, but

the quality of the results shows strong promise. We were also limited in the number

of human subjects; to show strong statistical significance it is necessary to have at

least 10 human readers, while 20 readers could be used in a very strong study to show

how the general population of human readers would be affected by the CAD system.

Leave-one-out method does not demonstrate whether an algorithm is general-

ized for the population cases that are not seen by the training stage. Nonetheless, it
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still uses a non-training sample for the testing stage. This method is useful when you

have a limited number of samples, and it demonstrates the robustness of the training

stage.

The classification results are restricted by the artificial classifiers limitations

discussed in section 6.2.2.1 on page 124.

6.4 Summary

In this study, we have investigated different methods for automatic segmen-

tation of BMRI lesions, and implemented a semi-automatic segmentation method.

We have contributed validated algorithms for classifying BMRI lesions using artifi-

cial intelligence techniques. We also have developed a CAD system that uses these

algorithms to assist readers with different levels of experience (experts, mammogra-

phers, and fellows) while they are reading breast MR cases. When they find lesions,

the CAD system will improve their diagnosis, leading to fewer unnecessary biopsies,

and more cancer found at an earlier, treatable stage. Finally, we have performed a

thorough human reader experiment, showing that a CAD system can improve the

performance of a human reader in breast MR classification.

We validated the algorithms using a data base of 75 BMRI images (80 lesions).

Thirteen features were selected based on shape, texture, and enhancement kinetics of

BMRI lesions. These features were fed to three artificial classifiers: a backpropaga-

tion neural network (BNN), support vector machine (SVM), and Bayesian classifier

(BC). The three classifiers were trained using the leave-one-out method, and eval-

uated using ROC curve analysis. The BNN system significantly outperformed the
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other two classifiers, thus it was used in the human reader experiments. Five radi-

ologists participated in these experiments: one BMRI expert, two mammographers,

and two body imaging fellows. The human readers’ performance was compared with

that of the BNN system, and evaluated using ROC curve and MRMC analysis with

and without CAD assistance.

All readers showed statistically significant improvements in their ability to

classify breast MRI lesions. Further, the BNN also significantly outperformed all

readers without CAD assistance. With CAD assistance, there was no significant

difference between the mammographers and the expert vs. the BNN. Though the

fellows show a significant improvement with CAD assistance, their performance with

CAD still did not match that of the mammographers and the expert.

At present, BMRI is best used as a diagnostic modality for high risk patients.

Its high cost and large datasets make it difficult to be used as a screening method. As

technology improves, cost generally decreases, and advanced CAD system can reduce

the radiologists workload. Traditionally, BMRI has shown high sensitivity but limited

specificity in finding cancer, Our CAD system has demonstrated high specificity for

detected lesions. This enables BMRI to be a non-invasive alternative for handling

suspicious lesions detected by mammography.
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CHAPTER 7
FUTURE WORK

In the future, this work can be extended in several directions. First, a fully au-

tomatic segmentation method can be further investigated. There are several possible

ways of achieving automatic segmentation. One possibility is to use the enhancement

kinetics, regional information, and a second neural network to classify each pixel

into categories such as air, breast tissue, skin, blood vessels, and possibly enhancing

masses. Connected components labeling should then be able to identify regions which

need to be analyzed with the malignant/benign classifier described in this thesis. To

overcome the problem of low specificity in MRI, the BNN could be augmented with

a second output indicating the confidence that this lesion is important. Right now,

a lesion that is not a cancerous mass (e.g. fibrosis), has to be classified as a benign

mass, since there is no other category for it. This may confuse the network during

training, because it has to reconcile two potentially very different classes. Adding the

importance classification can simplify the segmentation stage, because extra regions

from the segmentation stage could be properly classified as unimportant. Another

possibility is to again use enhancement kinetics, only this time have them form a

basis for thresholding. So instead of thresholding based on the difference between the

pre-contrast and a specific post-contrast, thresholding could be performed looking at

the entire enhancement profile.

More work can be done for tuning and validating the classifier. A larger

collection of BMRI images can provide more confidence as to the systems performance



www.manaraa.com

139

with a variety of lesion types. With a larger number of human readers, it would be

possible to compare which categories of readers are helped the most by CAD assistance

(experts, mammographers, fellows, residents). To become clinically useful, the system

needs to be trained and validated on scanners from different manufacturers, using a

wide set of protocols. This might also be a basis for creating optimized protocols for

automatic segmentation and classification.

There are still more features which could be explored for the classification step.

When diagnosing difficult cases, radiologists frequently use non-imaging information

(e.g. personal and family medical history, age, presence of BRCA1/2 genes, etc).

These features can be easily incorporated into the system.

The CAD system could be adapted for use as a teaching tool. It can provide

quick feedback for residents describing why this region is likely malignant or benign

(high spiculation, large area, etc). This type of training tool, with appropriate inter-

action, could boost the confidence of new readers as they interpret BMRI data.
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